ai大模型管理平台

星环模型运营平台
星环模型运营平台(Sophon LLMOps)是星环科技推出的企业级模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将模型落地到生产和业务中去。Sophon LLMOps打通并优化了语料接入和开发、提示工程、模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。

ai大模型管理平台 更多内容

标准化的AI能力运营服务。各类模型训练框架太多?SophonMLOps帮您统管SophonMLOps是星环科技基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理模型部署生命周期进行统一管理。同时,随着行内业务的持续发展,逐渐积累了大量由各类算法框架生成的异构AI模型,且多分散在不同的业务部门。如何兼容不同类型的模型文件,并统一纳管行内模型资产,成为了当前的重要挑战使用SophonMLOps搭建了全行统一的AI模型管理平台,快速接入行内积累的由不同框架或平台,训练生成的大量模型文件,规模化集成管理模型资产。平台支持使用标准化流程,统一构建模型推理逻辑,并支持零代码一键部署随着企业信息化的提升,AI模型也需要资产管理数据资产管理作为规划、控制、提供数据和信息资产的一组业务职能,其概念已经被大众所熟知。而随着企业对AI技术应用的日趋深入,在面对多样的AI应用场景下,企业内部会产生大量由各类算法框架训练生成的AI模型,对于模型开发和模型应用管理团队来说,如何管理这些AI模型,也是眼下亟待解决的问题。其实这些AI模型和企业数据一样,也是企业重要资产的一部分。对AI模型
行业资讯
AI模型
一个工具链来开发模型。星环科技作为国内领先的数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己的模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和AI模型,又称为规模AI模型、大型神经网络模型,是指参数数量庞大的人工智能模型,通常由数以亿计的参数组成。这些模型通常由深度学习算法训练而成,具有相对较高的准确性和复杂性。随着硬件计算能力的不断提升,以及训练数据集的不断扩大,AI模型的应用和研究越来越受到关注。AI模型具有以下几个特点:高度复杂性:AI模型拥有大量的参数,可以对更加复杂的问题建模和学习。相比于传统的机器学习算法,模型用户数据。这对于数据隐私和安全提出了挑战,需要合理的数据使用和保护措施。AI模型在许多领域都有着广泛的应用。例如,在自然语言处理领域,模型能够实现更加准确和流畅的文本生成、机器翻译和问答系统;在
图像识别中,通过学习大量的图像数据,模型可以准确地识别物体和场景,并对视觉信息进行分类和监测。为帮助企业构建自己的模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从随着技术的发展和计算能力的提高,AI模型成为了当今AI领域的火热话题。AI模型具有广泛的应用领域,如自然语言处理、图像识别、机器翻译等。AI模型是指参数数量超过数百万的深度神经网络模型,通常需要大量的计算资源和高性能硬件支持。这些模型通常由多个层次构成,每个层次包括了许多神经元,每个神经元都有一些权重,这些权重需要通过大量的训练数据进行调整,以使模型能够更准确的预测结果。AI模型广泛应用于自然语言处理、图像识别、语音识别和机器翻译等领域。以自然语言处理为例,AI模型可以帮助机器理解人类语言的复杂语义和语法结构,从而使得机器能够更准确地理解和分析人类语言。AI模型也可以被应用在,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环科技还推出了无涯金融模型Infinity、数据分析模型SoLar“求索”,促进金融分析和
模型AI是指使用大量数据和计算资源来训练高级人工智能(AI模型的技术。随着数据的大量增长和计算能力的提高,AI系统的性能也在不断提高。模型AI的目标是提高AI系统的表现,使其更加适应各种复杂的情况和任务。模型AI通常使用深度学习框架,来构建和训练模型。这些框架提供了强大的工具和库,使研究人员能够更容易地处理规模数据集,构建复杂的神经网络结构,并进行高效的计算。模型AI的应用非常广泛。然而,模型AI的培训和推理需要大量的计算资源和时间。模型AI通常需要强大的硬件基础设施和优化的软件环境才能运行。星环科技模型训练工具,帮助企业打造自己的专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用语言模型”训练/微调,得到“满足自身业务特点的领域语言模型”;第二
学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库AI模型是用大量数据和强大的计算机处理能力训练出来的一种深度学习模型AI模型是在统机器学习和深度学习模型的基础上进一步发展而来的。传统的机器学习模型和深度学习模型都有其自身的局限性,无法解决某些高难度的问题。而AI模型则通过增加模型的复杂度和训练数据量来解决这些问题,并且已经在许多领域中取得了重大的突破。AI模型的应用非常广泛,包括语音识别、图像识别、自然语言处理、推荐系统等方向。比如在语音识别方面,AI模型可以将口语转换为文本格式,大幅提高了智能语音助手的确率和可靠性。在图像识别方面,AI模型可以快速地识别出照片中的物体,并且可以更加准确地进行人脸识别。AI模型通过运用大量的数据和计算能力,可以在很多任务上取得比其他机器学习模型更好的效果。随着技术的不断进步和数据的增加,AI模型将在未来的智能化发展中发挥越来越重要的作用。为帮助企业构建自己的模型,星环科技推出了机器
AI训练管理平台:开启智能新时代AI训练管理平台是什么?AI训练管理平台,从本质上来说,是一个集成了多种人工智能算法和模型的软件系统,其核心任务是进行人工智能模型的训练与优化。在这个平台上,数据科学家和机器学习工程师能够轻松地对各种数据进行处理和分析,进而训练出满足不同需求的人工智能模型。以图像识别领域为例,研究人员可以将大量的图像数据导入AI训练管理平台平台会对这些图像进行预处理,如降噪训练语言模型,让机器能够理解和生成人类语言,实现智能聊天、文本摘要、机器翻译等功能。搭建AI训练管理平台的关键步骤搭建AI训练管理平台是一项复杂而系统的工程,需要遵循一系列严谨的步骤,以确保平台能够高效、稳定地运行,为AI模型的训练提供有力支持。(一)需求分析明确平台的目标和需求是搭建AI训练管理平台的首要任务。这一步骤如同为建筑绘制蓝图,只有精确规划,才能确保后续工作的顺利开展。我们需要确定平台收集相关的数据,数据来源可以是公开数据集、企业内部数据或通过网络爬虫获取的数据。收集到的数据往往存在噪声、缺失值和重复值等问题,需要进行清洗和预处理。(五)模型训练模型训练是AI训练管理平台的核心
行业资讯
AI模型
AI(人工智能)和模型(LargeModels)之间的关系是密切且相互促进的。模型AI领域的一个重要分支,它们的发展和应用正在推动AI技术的进步,并在多个领域产生深远影响。同时,AI的总体目标和原则也指导着模型的设计和应用。AI的发展推动了模型的兴起:随着AI技术的进步,特别是深度学习的发展,研究人员开始探索更大、更复杂的模型,以处理更复杂的任务和数据集。这些模型因为参数数量巨大而得名“模型”。模型AI的强力工具:模型因其庞大的参数量和深度学习能力,能够捕捉和学习数据中的复杂模式和关系,这使得它们在自然语言处理(NLP)、计算机视觉、语音识别等领域表现出色。模型提升了AI的能力和应用范围:模型通过预训练和微调,能够处理多种任务,从语言翻译、文本摘要到图像识别和生成,极大地扩展了AI的应用范围。AI技术的进步使得模型训练成为可能:随着计算能力的提升和算法的优化,如分布式训练、模型并行、混合精度训练等技术,使得训练具有数十亿甚至数千亿参数的模型成为可能。模型AI的挑战:模型需要大量的数据和计算资源,这对数据隐私、能源消耗和模型解释性提出了挑战,也是AI领域
行业资讯
AI模型训练
,并最终部署到实际应用中。AI模型的训练需要大量的计算资源和专业知识,旨在使模型能够理解和生成高质量的文本内容。星环语言模型运营平台——SophonLLMOps为了帮助企业用户基于模型构建未来AI模型的训练是一个复杂的过程,涉及使用深度学习技术对模型进行规模的数据训练。以星环科技的无涯为例,作为一个基于规模语言模型的智能助手,其训练过程通常包括以下几个关键步骤:数据收集:收集大量文本数据,这些数据可以来自互联网、书籍、文章等多源渠道,对于政务模型而言,则侧重于政务相关的文档和资料。数据预处理:清洗和格式化数据,去除噪声和无关信息,确保数据质量。模型构建:设计神经网络架构,用于应用,星环科技推出了模型持续提升和开发工具SophonLLMOps,实现领域模型的训练、上架和选代。SophonLLMOps服务于模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代”的人工智能应用。处理序列数据。训练过程:使用GPU或TPU等高性能计算资源对模型进行迭代训练,调整参数以最小化损失函数。评估与优化:在验证集上评估模型性能,并根据结果进行调优。测试与部署:在测试集上进一步验证模型效果
行业资讯
本地AI模型
支持本地部署AI模型模型下载与运行:用户可以从一些平台下载并运行模型,进行对话测试等。本地AI模型的部署为用户提供了更多的灵活性和控制权,同时也带来了对硬件配置、模型选择、性能测试和持续监控维护的要求。本地AI模型指的是可以在用户自己的硬件设备上部署和运行的人工智能模型,这些模型不需要依赖云端计算资源,可以在本地设备上直接处理数据和执行任务。以下是一些关于本地AI模型的关键点:完全控制:本地避免数据传输到云端可能需要的大量带宽并且耗时的问题,提高处理效率。技术和创新:在本地部署中,用户可以自由地实验新的技术和方法,这对前沿研究和开发特别重要。隐私保护:在本地部署AI模型可以确保敏感数据不离部署允许用户对硬件和软件环境进行完全控制,可以根据需要进行优化和定制,而无需依赖第三方提供商。深度定制:用户可以根据具体需求对模型和系统进行深度定制,不受云服务提供商的限制。可靠性和可用性:本地部署可以开本地环境,减少泄露的风险。降低成本:长期使用本地部署可能比持续支付云服务的使用费用更为经济。低延迟和高性能:本地部署可以提供更低的延迟和更高的性能,特别适合需要实时响应的应用。工具和平台:有一些工具和平台
产品文档
6.1 图计算
StellarDB5.0.1版本对图算法场景进行了大规模改进和提升,内置算法性能得到较大提升。在语法方面,StellarDB5.0.1的内置图算法对于返回的节点,会直接以节点类型返回。因此可以直接使用uid(vertex)访问节点的uid,而不再需要node_rk_to_uid函数进行uid的转换。可以参考PageRank等函数。另外,对于图算法返回的节点,我们也可以灵活的访问其其他属性作为返回值。图计算简介StellarDB的图计算使用TEoC语句调用相应图算法。算法的输入数据为图的点、边数据。当前版本中图计算支持结果返回、结果导出和结果写回。在使用图算法时,使用configcrux.execution.modeanalysis;语句切换到分析模式下使用图算法语句。图数据视图StellarDB支持创建一个可被持久化的视图,用于加速图算法执行过程。创建视图创建视图的语法如下所示:createquerytemporarygraphviewGRAPH_VIEW_NAMEas(v)[e]withGRAPH_ALGO(@GRAPH_VIEW_NAME,VIEW_STORE_PATH,CONFI...
通过beeline或JDBC时,设置参数configquery.langcypher;将查询语言切换为TEoC模式。根据使用场景选择查询模式(默认为immediate模式)immediate模式通常用于并发及短查询场景,查询结果和中间结果通常不超过百万。通过configcrux.execution.modeimmediate;切换。analysis模式通常用于分析场景,创建图、插入数据以及图算法相关的语句必须在该模式下进行。通过configcrux.execution.modeanalysis;切换。
产品文档
4 快速入门
快速上手本章节将引导您快速熟悉StellarDB,并为您初步介绍如何通过KGExplorer和beeline客户端操作StellarDB。其中,"StellarDB初探"一节通过构建一张人物关系图,从零介绍如何在StellarDB进行基本操作;"StellarDB进阶"一节为您提供了内置于StellarDB的《哈利·波特》人物关系图,帮助您进一步探索StellarDB。StellarDB初探使用KGExplorer构建图从Manager页面进入KGExplorer页面。若KGExplorer开启了单点登录,会自动跳转Federation登录页面,按如图方式登录:KGExplorer用戶开启方法以及详细使用说明请查看章节《KGExplorer使用文档》。点击登录后进入KGExplorer主页面。我们首先需要构建图名为"hello_world"的图。在主页面右上角点击创建图按钮开始图谱schema的构建。按照引导填写图基本信息后点击确定进入构建页面。在画布中,我们为"hello_world"图创建Boy和Girl两种类型的点,两种类型的点均包含name、salary、age、single四...
索引是数据库中某些数据的冗余副本,目的是使查询性能更优。作为代价,数据库需要额外存储空间和较慢写入速度,因此决定哪些字段需要索引是一项重要且不易的任务。(新)StellarDB5.0.1版本不再对旧版本使用的manipulatecreate_index和manipulatedelete_index语法进行支持,在新版本中统一使用createindex和dropindex进行索引的创建和删除新增索引CREATEINDEX[IFNOTEXISTS]FOR(LabelName)ON[f1,f2,...];CREATEINDEX[IFNOTEXISTS]FOR[LabelName]ON[f1,f2,...];不支持对TIME_SERIES类型的属性创建索引默认情况下,对同一个Label的某个属性多次创建索引会报错;但如果带有IFNOTEXISTS,则不会抛出任何错误包裹点边LabelName的括号不同,注意区分示例1.在点labelperson的属性name和age上建立索引CREATEINDEXIFNOTEXISTSFOR(person)ON[name,age];示例2.在边labelask...
为什么引入动态图模型?在实际应用过程中很容易可以发现,图数据在很多图数据的应用场景中并不是静态不变的,而是动态演进的,这些场景中包括例如金融反欺诈场景中金融交易网络随着时间的推进而发生的交易变化、交易社群变化等;又比如社交网络中新增用户、用户关注或者取消关注、更改账户信息等。将图数据变化的历史记录下来,不仅可以用于历史数据规律的总结,还可以利用动态图数据进行动态图神经网络相关技术的研究,从而进一步挖掘数据中潜在的数据价值和更加灵活高效的业务场景,譬如预测某一个时刻某一事件是否会发生。动态图模型的动态变化图数据的动态变化主要分为两类,一类是节点或边的属性的值的变化;另一类变化是子图(结构)的变化,如新增/删除点边。这两种图数据的动态变化可以单独发生,也可以同时发生。从图数据的属性变化角度来看,StellarDB5.0.1动态图模型可以记录图中节点或者边属性的所有历史版本(而非新数据覆盖旧数据)。在实际数据开发使用中,还可以结合诸如柱状图、趋势图等对历史数据进行可视化,更加直观、更加适合业务使用。从图数据的子图(结构)的角度来看,StellarDB5.0.1动态图模型还可以返回不同时间子图...
本章节的示例语句均可在示例图my_graph中执行,执行前请先创建示例图my_graph,建图语句如下:creategraphmy_graphwithschema(:Boy{namestring,salarydouble,ageint,singleboolean,birthdaylocaldatetime,reservelong,ratedecimal(38,10),hobbysarray<string>,geoPointgeo<double>})(:Girl{namestring,salarydouble,ageint,singleboolean,birthdaylocaldatetime,reservelong,ratedecimal(38,10),hobbysarray<string>,geoPointgeo<double>})[:Friend{sinceint}][:Likes{sinceint}]graphproperties:{`graph.shard.number`:3,`graph.replication.number`:...
产品文档
5.10 表达式
类型表达式类型例子十进制型整数10,-213十进制小数1.25,3.604E-14,-2.31十进制型长整数199345843592l,-12381543923L任意精度的有符号十进制数123bd,123.31BD八进制整数(0开头)084,-096字符串"星环",'信息科技'布尔类型true,false,TRUE,FALSE数组类型[1,2,3],["星环","信息科技"],[decimal(10.2,3,1),decimal(100.2,3,2)],[localdatetime("2021-01-18T09:50:12.627"),localdatetime("2021-11-18T03:50:12.113")]时间类型localdatetime("2021-01-18T09:50:12.627")Decimal类型decimal(10.2,3,1)地理空间类型point(20.5,30.5),point(-20.5,-30.5)时序类型{localdatetime("2023-01-01T15:16:17")::"nice"},{localdatetime("1997-01-01...
产品文档
7.1 自定义函数
StellarDB支持用户添加自定义函数,添加后可在cypher语句中使用。自定义函数实现自定义函数通过java/scala语言开发,可继承实现两种基类,编译成jar包,通过指定命令加载到StellarDB。需要实现的基类为如下两种,可自行选择继承合适的基类:继承UDF基类继承GenericUDF基类。继承UDF基类该类实现简单,功能较为单一。支持Quark的基本类型、数组和Map。适合实现简单的逻辑。继承org.apache.hadoop.hive.ql.exec.UDF类继承UDF类必须实现evaluate方法且返回值类型不能为void,支持定义多个evaluate方法不同参数列表用于处理不同类型数据。@Description(name="my_plus",value="my_plus()-ifstring,doconcat;ifinteger,doplus",extended="Example:\n>selectmy_plus('a','b');\n>ab\n>selectmy_plus(3,5);\n>8")/***实现UDF函数,若字符串执行拼接,in...
产品文档
5.12 变量声明
声明简介声明是指为特定数据类型的变量分配一定的存储空间,并命名该变量以便引用它;必须先声明变量,然后才能引用它;对声明的变量可以进行赋值操作来改变它的值;声明的变量其作用域是Session级别的。变量声明使用decl关键字声明一个变量必须为变量指定名称和类型,且名称不能与已有的变量名相同。声明但未赋值的变量的默认值为null。变量名声明对大小写敏感。变量声明的语句遵循如下格式:DECL[<variable_name>:<variable_type>];使用方法示例如下表所示:语句说明declx:int;声明一个类型为int的变量xdecls:string;声明一个类型为string的变量sdecll:long;声明一个类型为long的变量ldeclb:boolean;声明一个类型为boolean的变量bdecld:double;声明一个类型为double的变量ddecltime:localdatetime;声明一个类型为localdatetime的变量timedecld1:decimal;声明一个类型为decimal的变量d1decllist1:list[int...
产品文档
3 安装 StellarDB
3.1在TDH平台安装StellarDB3.2StellarDB安装校验3.3StellarDB低版本升级至StellarDB5.0.1