语言大模型软件有哪些

星环模型运营平台
星环模型运营平台(Sophon LLMOps)是星环科技推出的企业级模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、闭环地将模型落地到生产和业务中去。Sophon LLMOps打通并优化了语料接入和开发、提示工程、模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。

语言大模型软件有哪些 更多内容

行业资讯
语言模型
语言模型(LargeLanguageModel,简称LLM)是然语言处理领域的一种重要技术,语言模型可以为人工智能提供更为精准和自然的语言处理能力。LLM的核心思想是利用机器学习算法学习规模语料库中的语言模型,并通过对学到的模型进行概率推断来构建对应的文本生成模型语言模型有助于提高机器的语言理解和生成能力。通常来说,人类的语言表达和理解非常灵活和多样化。我们可以使用不同的语言风格、词汇语料库,可以在高效的情况下生成基于人类语言的文本,从而提高机器的语言达和理解能力。语言模型可以用于各种语言处理任务。由于LLM可以生成自然而然的文本,因此它可以用于各种语言处理任务,如问答系统、文本摘要、机器翻译、语音合成等,在这些任务中,LLM可以将大量的语言特征、语法规则、词汇义项等信息嵌到它的内部模型中,然后通过模型概率推断的方式,生成相应的文本结果。语言模型是构建人工智能的重要组成部分到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发模型。星环科技作为国内领先的数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的多模态、智能化
TranswarpInfinity是一款面向金融量化领域、超大规模参数量的生成式语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的理解和生成能力,支持股票、债券、基金、商品等市场事件的全面复盘、总结及具备高精准、强逻辑的事理分析与推断力,并能够对股票、债券、基金、商品等各类市场事件进行全面的复盘和推演。四是专门设计针对金融行业的语言模型架构,具备准确理解和合理分析金融领域的专业能力。五是背靠数据领域模型。它可以衍生出许多子领域子任务微调模型。“求索”模型具备数据行业需求理解、推理、各类(含多模型)结构化查询语言和代码生成、文本生成、嵌入向量生成、知识推理等能力;用户只需使用自然语言,就能利用“求索”模型获取所需的数据分析、展示和报告。星环语言模型运营平台-SophonLLMOps为了满足企业应用语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出语言模型及其衍生数据、模型和应用方面的问题,SophonLLMOps工具链需要完成从通用语言模型的训练和微调、模型上架到模型持续运营及提升迭代的全流程任务,从而成功构建满足企业自身业务特点的领域
金融模型在金融领域的应用具有重要的意义和价值,可以提供准确的金融分析和预测,为金融决策和风险管理提供有力支持。金融模型哪些?星环无涯金融模型-Infinityhttps模型。主要通过自监督的增量训练和监督的指令微调,使用星环科技高性能计算集群训练而成。星环科技无涯使用上百万的高质量的专业金融语料,涵盖了研报、公告、政策、新闻等高质量的自然语言文本,作为基础模型的的智能投研新范式。星环科技无涯金融模型,寓意学海无涯,既代表了投资领域终身学习的精神,也蕴含了模型本身在参数架构方面持续迭代的内涵。可以说无涯是一款面向金融量化领域、超大规模参数量的生成式语言生成策略因子集合,构建立体的归因解释体系。星环科技长期深耕金融领域,服务大量金融行业客户,积累了上百万金融专业领域的语料;基于星环科技对图数据库、深度图推理算法的技术,形成了规模高质量的金融类事件训练指令集。二者共同铸就了星环科技开发金融领域语言模型的坚实底座。智能投研模型无涯Infinity。星环科技基于模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度
(NaturalLanguageProcessing,NLP)的一种方法,利用规模语料数据进行预训练来构建预训练语言模型(Pre-trainedLanguageModels,PLMs)。简单来说,语言模型是一种深度学习模型,通过在规模数据集所谓语言模型是一种机器学习算法,可以根据给定文本来预测下一个词语或字符出现的概率。通过大量的文本数据学习语言的统计特征,然后生成具有相似统计特征的新文本。其主要目标是建立一个统计模型,用于估计文本序列中每个词语或字符出现的概率,从而实现自然语言处理任务,如语言生成和语言理解。大型语言模型(LargeLanguageModel,LLM)是自然语言处理上进行训练,以实现对人类语言的理解。它的主要目标是准确地学习和理解人类语言,使得机器能够像人类一样解释和理解语言。这种模型的出现彻底改变了计算机理解和生成人类语言的方式。与普通的语言模型相比,大型语言模型在规模上有显著不同。这种类型的模型通常具备大量的参数,并利用巨大的文本语料库进行训练。大型语言模型是一种强大的工具,通过减少人工干预,可以快速、准确地处理自然语言数据。这些模型可用于许多任务,如文本
行业资讯
模型语言
模型语言通常指的是用于构建规模预训练模型的编程语言和框架。语言模型(LLMs):语言模型是在规模文本语料上训练的预训练语言模型,它们能够理解和生成人类语言。这些模型通常具有大量的参数,并使用巨量的文本数据进行训练。实时语音交互:某些模型i能够实现与大型语言模型的实时语音交互,无需语音转录,直接从语音指令中生成文本和语音响应,显著提升了用户体验。多模态能力:一些模型是多模态版本,能够在现实场景中控制机器人完成简单任务,它们能够处理文本、音频、图像等多种形式的数据。涌现能力:语言模型展现出的“涌现能力”,如上下文学习、指令遵循、逐步推理等,是其规模达到一定水平后显现的特殊能力。开源语言模型:国内外有许多组织开源了他们的语言模型,这些模型能够处理各种自然语言处理任务,如生成、分类、摘要、翻译、语音识别等。应用前景:语言模型的应用前景广阔,它们正在改变计算机理解和生成人类语言的方式,并在多个领域展现出强大的潜力。交互体验:模型通过模仿人类的交流机制,特别是在非正式语言交互方面,提供了良好的交互体验,这对于AI的商业应用很重要
行业资讯
LLM 语言模型
语言模型(LLM)是指使用大量文本数据训练的深度学习模型,可以生成自然语言文本或理解语言文本的含义。语言模型可以处理多种自然语言任务,如文本分类、问答、对话等。语言模型通常使用规模的语料库进行训练,这些语料库包含了大量的文本数据,涵盖了各种领域和语言风格。通过训练,语言模型可以学习到文本数据的内在特征和规律,从而在各种自然语言处理任务中表现出色。语言模型的优势在于其能够处理复杂的自然语言任务,并且生成的文本质量较高。此外,由于语言模型经过了大量的文本数据训练,因此其具有很好的泛化性能,可以适应多种场景和应用。LLM语言模型的应用场景主要集中在自然语言处理、机器翻译、智能写作、智能客服、智能语音助手、自然语言推理等领域。自然语言处理:LLM可以用于文本生成、情感分析、语言翻译等领域,帮助人们快速生成高质量的文章、简历、报告等。机器翻译:特别是在处理长文本和专业术语时效果更为广泛应用。智能语音助手:帮助人们处理语音输入和输出。这类应用可以在智能家居、智能手机、智能汽车等领域得到广泛应用。自然语言推理系统:帮助人们进行逻辑推理和分析。这类应用可以在法律、金融、医疗等领域得到广泛应用。
模型语言模型是人工智能领域中两个重要的概念,各自有不同的特点和应用场景。模型:通常指的是具有规模参数和复杂计算结构的机器学习模型,这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。模型在各种领域都有广泛的应用,包括自然语言处理、计算机视觉、语音识别和推荐系统等。模型通过训练海量数据来学习复杂的模式和特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测。语言模型:(LargeLanguageModels,简称LLMs)是模型的一个子集,专注于处理自然语言,能够理解、生成和处理规模文本数据。语言模型在机器翻译、文本生成、对话系统等任务上取得显著成果。这些模型通过在大型文本语料库上进行训练,学会理解语言的结构、语义、语境和语用等方面。语言模型的特点是规模庞大,包含数十亿的参数,帮助它们学习语言数据中的复杂模式。模型是一个更广泛的概念,包括了语言模型在内的多种类型的模型,而语言模型则是专门针对自然语言处理任务的模型模型可以应用于多种不同的领域,而语言模型主要应用于自然语言相关的任务。
语言模型训练是指使用规模数据对语言模型进行训练,以捕捉更丰富的语义和语法结,生成更高质量的文本。语言模型训练需要大量的文本进行训练。传统的语言模型训练往往使用小规模数据集,如数百万个句子或几十个GB的文本。而语言模型训练则使用更大规模的数据集,如数十亿个句子或数百GB的文本。这些数据包括各种类型的文本,如新闻、百科、小说、社交媒体等,以便涵盖尽可能多的语言特征和应用场景。语言模型训练技术和工具的不断发展为语言模型训练提供了坚实的基础。语言模型训练还需要合适的模型结构和超参数设置。常用的模型结构包括循环神经网络和变种以及自注意力机制。同时,还需要调整模型的超参数,如层数、隐藏单元数、学习率等,以取得佳的性能和效果。语言模型训练在自然语言处理和人工智能领域有着广泛的应用。例如,可以用于机器翻译、文本摘要、对话生成和智能问答等任务。此外,语言模的训练还可以用于生成文本,如自动作诗、小说写作和对话机器人等。模型持续开发和训练工具为了满足企业应用语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的模型持续开发和训练工具
星环科技致力于打造企业级数据基础软件,围绕数据全生命周期提供基础软件与服务。在模型领域,星环科技发布了一系列的工具产品供用户使用,助力企业抓住模型时代的新机遇。工具链方面,发布了模型外挂存储行业诸多落地案例。同时星环科技积极参与行业共建,为中国大模型生态发展贡献智慧力量。星环科技参编了国内首个金融行业大模型标准——《面向行业的规模预训练模型技术和应用评估方法第1部分:金融模型》,为分布式向量数据库Hippo、模型预训练微调工具SophonLLMOps及自动化知识库构建工具TKS。预训练模型方面,发布了金融模型星环无涯(Infinity)和数据分析模型星环求索(SoLar)。用户可以通过星环科技自动化知识工程、多模态数据处理等技术,有效降低企业构建自有模型应用的门槛,并不断促进我国大模型生态的持续繁荣。星环科技模型产品目前已经在政府、金融、运营商、制造、能源等多个10家单位联合发起的中国大模型语料数据联盟,致力于做好数据资源“开发者”。此外星环科技在模型领域也收获了一系列荣誉奖项:入选“2023中国人工智能模型企业50强”、星环科技无涯金融模型
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。