ai大模型商业应用

行业资讯
模型商业
模型商业化通过提供API服务、集成到现有产品、订阅模式等多种途径,将AI技术转化为实际的经济效益,推动企业和市场的智能化转型。模型商业化主要涉及以下几个方面:市场规模增长:预计到2024年,中国大模型市场规模将达到120亿元,显示出模型商业化的快速增长趋势。收费模式:当前模型市场的收费方式主要分为三种:单独的模型模型加算力、模型应用。其中,“模型+算力”是最主流的收费方式。行业应用:能源和金融行业在模型商业化进度上位居前列,尤其是中央企业和国有企业在推动模型应用和预算投入方面表现积极。商业化趋势:随着模型生态的成熟,应用层将成为模型商业化的主力。同时,新的需求如LLMOps、模型一体机等将为商业化提供更多机会。服务价格下降:模型服务价格的逐渐下降将加速其在中小企业中的渗透,推动模型市场的蓬勃发展。开源模型:通过降低开发门槛和成本,加速模型应用的渗透,拓展商业化市场空间。出海机会:中国大模型厂商在跨境电商、游戏、社交媒体等泛娱乐领域有出海机会。商业化路径:模型商业化路径多样,包括API开放平台模式、ToB产品化、与现有产品集成等,这些路径使得

ai大模型商业应用 更多内容

行业资讯
AI模型应用
AI模型是参数数量或规模庞大的人工智能模型,通常包括深度神经网络中参数数量超过数百万的模型AI模型在许多领域都有广泛的应用,括自然语言处理,计算机视觉,语音识别,强化学习等。以下是AI模型的一些应用:自然语言处理:模型可以用于机器翻译、文本生成、问答系统等任务。计算机视觉:模型可以用于图像识别、目标检测、图像生成等任务。语音识别:模型可以用于语音识别、语音合成等任务。强化学习:智能投资等任务。星环科技模型训练工具,帮助企业打造自己的专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。除此之外,星环科技在行业首先推出了两行业大模型:服务于金融行业的星环金融模型无涯,以及数据分析模型SoLar“求索”。模型可以用于训练智能体在环境中学习优策略。医疗诊断:模型可以用于辅助医生进行疾病诊断和预测。自动驾驶:模型可以用于自动驾驶车辆中的感知、决策和控制。金融预测:模型可以用于股票价格预测、风险评估和
AI模型应用开发是一个综合性的过程,涉及多个关键步骤和技术要点。1.明确应用场景和需求场景分析:深入研究目标行业和应用场景,例如医疗领域的辅助诊断、金融领域的风险评估、教育领域的个性化学习辅助等,如界面友好性、交互便捷性等。2.选择合适的模型模型评估:根据应用需求,评估不同的AI模型。考虑模型的性能指标,如在相关任务中的准确率、召回率等;模型的规模和复杂度是否适合部署环境;模型的预训练领域是否与应用场景匹配等。模型来源:可以选择开源的模型,利用其公开的架构和参数进行微调。也可以使用商业公司提供的模型服务,或者自行训练一个新的模型。3.数据准备数据收集:收集与应用场景相关的数据。了解场景中的业务流程、用户需求和痛点,确定模型可以发挥作用的具体环节。需求定义:明确应用的功能需求,如文本生成、翻译、分类,还是问答系统等;性能需求,包括准确率、响应时间、吞吐量等;以及用户体验需求,数据的质量和数量会直接影响模型应用的效果。例如,对于情感分析应用,需要收集带有情感标签的文本数据;对于图像识别应用,需要收集大量的图像及其对应的标签。数据预处理:对收集的数据进行清洗,去除噪声、重复
AI模型可以应用于许多领域,包括自然语言处理、计算机视觉、语音识别、人工智能游戏、机器译等等。以下是部分具体的应用场景:自然语言处理:AI模型可以更准确地完成文本分类、情感分析、实体识别、语义数据分析,从而实现更准确和智能的金融风险管理。医疗诊断:AI模型可以基于数据应用于医疗领域,帮助医生提高诊断准确性和医疗效率。智能客服:AI模型可以帮助企业实现智能客服的自动化,在解决客户问题的匹配等任务。计算机视觉:AI模型可以大幅提高计算机视领域的图像识别、分割、人脸识别和目标检测的精度与效率。语音识别:AI模型能够更精准地识别语音信号,提高语音识别的准确率和响应速度。人工智能游戏:AI模型有助于实现更强大的AI玩家,更真实和智能的游戏情境以及更高质量的游戏体验。机器翻译:AI模型可以获得更高的机器翻译质量,从而提高翻译的效率和可靠性。金融风控:AI模型可以自动化地进行大量同时,提高企业效率。智慧城市:利用AI模型,可以实现市信息化的智能升级,探索城市发展的新动能,提高城市治理的效率。星环科技模型训练工具,帮助企业打造自己的专属模型星环科技在行业内首先提出行业大模型
等方面的应用,提高生产效率和产品质量。随着AI模型的落地加速,各行业应用生态也在加速形成。越来越多的企业和机构开始将AI模型技术应用于自身的业务中,探索新的商业模式和创新点。同时,也涌现出了一批基于AI模型技术的创新创业企业,为各行业提供更加智能化、高效化的解决方案和服务。随着人工智能技术的不断发展和进步,AI模型已经成为各行业应用的重要支撑。AI模型具有强大的数据处理和学习能力,能够帮助各行业实现自动化、智能化、高效化的处理和决策。目前,AI模型已经在医疗、金融、教育、制造等众多领域得到了广泛应用。在医疗领域,AI模型可以帮助医生进行疾病诊断和治疗方案制定,提高诊断准确率和治疗效果。在金融领域,AI模型可以用于风险评估、信用评级、投资决策等方面,提高金融服务的智能化水平和风险控制能力。在教育领域,AI模型可以根据学生的学习情况和反馈进行智能化的教学设计和推荐,提高教学质量和学生学习效果。在制造领域,AI模型可以实现智能制造、智能监控、智能维护
情况和任务。模型AI通常使用深度学习框架,来构建和训练模型。这些框架提供了强大的工具和库,使研究人员能够更容易地处理规模数据集,构建复杂的神经网络结构,并进行高效的计算。模型AI应用非常广泛模型AI是指使用大量数据和计算资源来训练高级人工智能(AI模型的技术。随着数据的大量增长和计算能力的提高,AI系统的性能也在不断提高。模型AI的目标是提高AI系统的表现,使其更加适应各种复杂的。然而,模型AI的培训和推理需要大量的计算资源和时间。模型AI通常需要强大的硬件基础设施和优化的软件环境才能运行。星环科技模型训练工具,帮助企业打造自己的专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出,帮助客户将原型的语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用语言模型模型的持续提升。除此之外,星环科技在行业首先推出了两行业大模型:服务于金融行业的星环金融模型无涯,以及数据分析模型SoLar“求索”。
行业资讯
AI模型
AI(人工智能)和模型(LargeModels)之间的关系是密切且相互促进的。模型AI领域的一个重要分支,它们的发展和应用正在推动AI技术的进步,并在多个领域产生深远影响。同时,AI的总体目标和原则也指导着模型的设计和应用AI的发展推动了模型的兴起:随着AI技术的进步,特别是深度学习的发展,研究人员开始探索更大、更复杂的模型,以处理更复杂的任务和数据集。这些模型因为参数数量巨大而得名的能力和应用范围:模型通过预训练和微调,能够处理多种任务,从语言翻译、文本摘要到图像识别和生成,极大地扩展了AI应用范围。AI技术的进步使得模型训练成为可能:随着计算能力的提升和算法的优化,如“模型”。模型AI的强力工具:模型因其庞大的参数量和深度学习能力,能够捕捉和学习数据中的复杂模式和关系,这使得它们在自然语言处理(NLP)、计算机视觉、语音识别等领域表现出色。模型提升了AI分布式训练、模型并行、混合精度训练等技术,使得训练具有数十亿甚至数千亿参数的模型成为可能。模型AI的挑战:模型需要大量的数据和计算资源,这对数据隐私、能源消耗和模型解释性提出了挑战,也是AI领域
随着技术的发展和计算能力的提高,AI模型成为了当今AI领域的火热话题。AI模型具有广泛的应用领域,如自然语言处理、图像识别、机器翻译等。AI模型是指参数数量超过数百万的深度神经网络模型,通常需要大量的计算资源和高性能硬件支持。这些模型通常由多个层次构成,每个层次包括了许多神经元,每个神经元都有一些权重,这些权重需要通过大量的训练数据进行调整,以使模型能够更准确的预测结果。AI模型广泛应用于自然语言处理、图像识别、语音识别和机器翻译等领域。以自然语言处理为例,AI模型可以帮助机器理解人类语言的复杂语义和语法结构,从而使得机器能够更准确地理解和分析人类语言。AI模型也可以被应用数据接入开发、提示工程、模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予模型“长期记忆”,打破通用模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环科技还推出了无涯金融模型Infinity、数据分析模型SoLar“求索”,促进金融分析和
行业资讯
AI模型
提升,以及训练数据集的不断扩大,AI模型应用和研究越来越受到关注。AI模型具有以下几个特点:高度复杂性:AI模型拥有大量的参数,可以对更加复杂的问题建模和学习。相比于传统的机器学习算法,模型用户数据。这对于数据隐私和安全提出了挑战,需要合理的数据使用和保护措施。AI模型在许多领域都有着广泛的应用。例如,在自然语言处理领域,模型能够实现更加准确和流畅的文本生成、机器翻译和问答系统;在AI模型,又称为规模AI模型、大型神经网络模型,是指参数数量庞大的人工智能模型,通常由数以亿计的参数组成。这些模型通常由深度学习算法训练而成,具有相对较高的准确性和复杂性。随着硬件计算能力的不断较高的计算资源和存储空间。这也限制了模型的广泛应用,只有拥有足够的计算资源的组织和个人才能充分利用模型的潜力。数据隐私和安全问题:模型通常需要海量的数据用于练,这意味着在使用模型时需要处理大量的,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和
随着人工智能技术的不断发展,越来越多的AI模型迅速发展。这些模型具有大量的、层数较深和较高的模型复杂度,能够通过处理海量的数据进行学习和预测。那么,AI模型应用于哪些场景呢?AI模型有许多应用场景,以下是一些常见的应用:语理解与处理:AI模型可以用于自然语言处理(NLP)任务,如文本分类、命名实体识别、机器翻译、对话系统等。图像识别与处理:AI模型可以用于图像识别、物体检测、图像分割可应用于欺诈检测、信用评估、风险预测等金融风控场景。医疗辅助:AI模型可用于医学影分析、疾病诊断、药物研发等医疗辅助应用。虚拟现实与增强现实:AI模型可用于虚拟现实与增强现实技术的感知、交互、渲染等方面。尽管AI模型在许多领域有潜力应用但由于模型的计算资源需求较高,实际落地用仍面临挑战。星环科技模型训练工具,帮助企业打造自己的专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应、图像生成等。语音识别与处理:AI模型可以用于语音识别、语音合成、情感分析等。推荐系统:AI模型可以用于根据用户的历史行为和个人特征,进行个性化推荐,如商品推荐、内容推荐等。金融风控:AI模型
通过beeline或JDBC时,设置参数configquery.langcypher;将查询语言切换为TEoC模式。根据使用场景选择查询模式(默认为immediate模式)immediate模式通常用于并发及短查询场景,查询结果和中间结果通常不超过百万。通过configcrux.execution.modeimmediate;切换。analysis模式通常用于分析场景,创建图、插入数据以及图算法相关的语句必须在该模式下进行。通过configcrux.execution.modeanalysis;切换。
产品文档
5.10 表达式
类型表达式类型例子十进制型整数10,-213十进制小数1.25,3.604E-14,-2.31十进制型长整数199345843592l,-12381543923L任意精度的有符号十进制数123bd,123.31BD八进制整数(0开头)084,-096字符串"星环",'信息科技'布尔类型true,false,TRUE,FALSE数组类型[1,2,3],["星环","信息科技"],[decimal(10.2,3,1),decimal(100.2,3,2)],[localdatetime("2021-01-18T09:50:12.627"),localdatetime("2021-11-18T03:50:12.113")]时间类型localdatetime("2021-01-18T09:50:12.627")Decimal类型decimal(10.2,3,1)地理空间类型point(20.5,30.5),point(-20.5,-30.5)时序类型{localdatetime("2023-01-01T15:16:17")::"nice"},{localdatetime("1997-01-01...
本章节的示例语句均可在示例图my_graph中执行,执行前请先创建示例图my_graph,建图语句如下:creategraphmy_graphwithschema(:Boy{namestring,salarydouble,ageint,singleboolean,birthdaylocaldatetime,reservelong,ratedecimal(38,10),hobbysarray<string>,geoPointgeo<double>})(:Girl{namestring,salarydouble,ageint,singleboolean,birthdaylocaldatetime,reservelong,ratedecimal(38,10),hobbysarray<string>,geoPointgeo<double>})[:Friend{sinceint}][:Likes{sinceint}]graphproperties:{`graph.shard.number`:3,`graph.replication.number`:...
产品文档
4 快速入门
快速上手本章节将引导您快速熟悉StellarDB,并为您初步介绍如何通过KGExplorer和beeline客户端操作StellarDB。其中,"StellarDB初探"一节通过构建一张人物关系图,从零介绍如何在StellarDB进行基本操作;"StellarDB进阶"一节为您提供了内置于StellarDB的《哈利·波特》人物关系图,帮助您进一步探索StellarDB。StellarDB初探使用KGExplorer构建图从Manager页面进入KGExplorer页面。若KGExplorer开启了单点登录,会自动跳转Federation登录页面,按如图方式登录:KGExplorer用戶开启方法以及详细使用说明请查看章节《KGExplorer使用文档》。点击登录后进入KGExplorer主页面。我们首先需要构建图名为"hello_world"的图。在主页面右上角点击创建图按钮开始图谱schema的构建。按照引导填写图基本信息后点击确定进入构建页面。在画布中,我们为"hello_world"图创建Boy和Girl两种类型的点,两种类型的点均包含name、salary、age、single四...
产品文档
3 安装 StellarDB
3.1在TDH平台安装StellarDB3.2StellarDB安装校验3.3StellarDB低版本升级至StellarDB5.0.1
产品文档
7.1 自定义函数
StellarDB支持用户添加自定义函数,添加后可在cypher语句中使用。自定义函数实现自定义函数通过java/scala语言开发,可继承实现两种基类,编译成jar包,通过指定命令加载到StellarDB。需要实现的基类为如下两种,可自行选择继承合适的基类:继承UDF基类继承GenericUDF基类。继承UDF基类该类实现简单,功能较为单一。支持Quark的基本类型、数组和Map。适合实现简单的逻辑。继承org.apache.hadoop.hive.ql.exec.UDF类继承UDF类必须实现evaluate方法且返回值类型不能为void,支持定义多个evaluate方法不同参数列表用于处理不同类型数据。@Description(name="my_plus",value="my_plus()-ifstring,doconcat;ifinteger,doplus",extended="Example:\n>selectmy_plus('a','b');\n>ab\n>selectmy_plus(3,5);\n>8")/***实现UDF函数,若字符串执行拼接,in...
为什么引入动态图模型?在实际应用过程中很容易可以发现,图数据在很多图数据的应用场景中并不是静态不变的,而是动态演进的,这些场景中包括例如金融反欺诈场景中金融交易网络随着时间的推进而发生的交易变化、交易社群变化等;又比如社交网络中新增用户、用户关注或者取消关注、更改账户信息等。将图数据变化的历史记录下来,不仅可以用于历史数据规律的总结,还可以利用动态图数据进行动态图神经网络相关技术的研究,从而进一步挖掘数据中潜在的数据价值和更加灵活高效的业务场景,譬如预测某一个时刻某一事件是否会发生。动态图模型的动态变化图数据的动态变化主要分为两类,一类是节点或边的属性的值的变化;另一类变化是子图(结构)的变化,如新增/删除点边。这两种图数据的动态变化可以单独发生,也可以同时发生。从图数据的属性变化角度来看,StellarDB5.0.1动态图模型可以记录图中节点或者边属性的所有历史版本(而非新数据覆盖旧数据)。在实际数据开发使用中,还可以结合诸如柱状图、趋势图等对历史数据进行可视化,更加直观、更加适合业务使用。从图数据的子图(结构)的角度来看,StellarDB5.0.1动态图模型还可以返回不同时间子图...
产品文档
6.1 图计算
StellarDB5.0.1版本对图算法场景进行了大规模改进和提升,内置算法性能得到较大提升。在语法方面,StellarDB5.0.1的内置图算法对于返回的节点,会直接以节点类型返回。因此可以直接使用uid(vertex)访问节点的uid,而不再需要node_rk_to_uid函数进行uid的转换。可以参考PageRank等函数。另外,对于图算法返回的节点,我们也可以灵活的访问其其他属性作为返回值。图计算简介StellarDB的图计算使用TEoC语句调用相应图算法。算法的输入数据为图的点、边数据。当前版本中图计算支持结果返回、结果导出和结果写回。在使用图算法时,使用configcrux.execution.modeanalysis;语句切换到分析模式下使用图算法语句。图数据视图StellarDB支持创建一个可被持久化的视图,用于加速图算法执行过程。创建视图创建视图的语法如下所示:createquerytemporarygraphviewGRAPH_VIEW_NAMEas(v)[e]withGRAPH_ALGO(@GRAPH_VIEW_NAME,VIEW_STORE_PATH,CONFI...
产品文档
5.12 变量声明
声明简介声明是指为特定数据类型的变量分配一定的存储空间,并命名该变量以便引用它;必须先声明变量,然后才能引用它;对声明的变量可以进行赋值操作来改变它的值;声明的变量其作用域是Session级别的。变量声明使用decl关键字声明一个变量必须为变量指定名称和类型,且名称不能与已有的变量名相同。声明但未赋值的变量的默认值为null。变量名声明对大小写敏感。变量声明的语句遵循如下格式:DECL[<variable_name>:<variable_type>];使用方法示例如下表所示:语句说明declx:int;声明一个类型为int的变量xdecls:string;声明一个类型为string的变量sdecll:long;声明一个类型为long的变量ldeclb:boolean;声明一个类型为boolean的变量bdecld:double;声明一个类型为double的变量ddecltime:localdatetime;声明一个类型为localdatetime的变量timedecld1:decimal;声明一个类型为decimal的变量d1decllist1:list[int...
索引是数据库中某些数据的冗余副本,目的是使查询性能更优。作为代价,数据库需要额外存储空间和较慢写入速度,因此决定哪些字段需要索引是一项重要且不易的任务。(新)StellarDB5.0.1版本不再对旧版本使用的manipulatecreate_index和manipulatedelete_index语法进行支持,在新版本中统一使用createindex和dropindex进行索引的创建和删除新增索引CREATEINDEX[IFNOTEXISTS]FOR(LabelName)ON[f1,f2,...];CREATEINDEX[IFNOTEXISTS]FOR[LabelName]ON[f1,f2,...];不支持对TIME_SERIES类型的属性创建索引默认情况下,对同一个Label的某个属性多次创建索引会报错;但如果带有IFNOTEXISTS,则不会抛出任何错误包裹点边LabelName的括号不同,注意区分示例1.在点labelperson的属性name和age上建立索引CREATEINDEXIFNOTEXISTSFOR(person)ON[name,age];示例2.在边labelask...