国内大模型写材料

星环无涯·问知
星环科技无涯·问知Infinity Intelligence,是一款基于星环模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。

国内大模型写材料 更多内容

行业资讯
模型代码
模型代码是利用规模预训练模型,通过智能代码提示、自动完成、错误检测修复等功能辅助编程,虽能提升效率、助力学习,但存在代码质量、上下文理解等局限,其应用场景广泛且未来发展趋势向好。模型代码具有多方面特点及影响,具体如下:模型代码优势提升效率:能快速根据自然语言描述生成代码片段甚至完整的代码文件,比如开发人员只需用自然语言描述想要实现的功能,大节省编写基础代码结构的时间,让开发人员将代码注释来解释其逻辑,有助于初学者更快掌握编程技能。多语言支持:能够涵盖多种主流编程语言,开发人员无论从事何种项目、使用哪种语言开发,都有机会借助模型获得代码生成或优化方面的帮助。模型代码局限调整完善。知识更新滞后:模型的知识截止到其训练时的数据,如果编程语言有了新的版本更新、推出了新的特性或标准库函数有变化,它可能无法及时知晓并运用,导致生成的代码采用了过时的写法。模型代码应用场景快速代码转换为另一种编程语言风格的代码,方便开发人员进行代码迁移或者学习不同语言间代码实现的差异,便于在不同的项目环境中使用。模型代码发展趋势与开发工具深度融合:未来有望更紧密地和各类主流开发工具集成
模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发模型。星环科技作为国内领先的数据基础软件开发商,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己的模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予模型“长期记忆”,打破通用模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环科技还推出了无涯金融模型Infinity、数据分析模型SoLar“求索”,促进金融分析和数据分析的平民化。星环科技将自主研发的领先创新技术赋能各行各业,与生态伙伴共同打造国产化数据技术生态,推动数字经济的可持续发展。无涯是一款面向金融量化领域、超大规模参数量的生成式语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的理解和生成能力,支持股票、债券、基金、商品等市场事件的
国内各大互联网公司纷纷投入AI模型的研发,涉及多种类型的模型。以下是星环科技模型相关产品:星环无涯金融模型-TranswarpInfinity星环无涯金融智能投研模型TranswarpInfinity是一款面向金融量化领域、超大规模参数量的生成式语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的理解和生成能力,支持股票、债券、基金、商品等市场事件的全面复盘、总结及新范式。星环科技无涯金融模型的核心优势:一是利用海量金融专业语料和舆情工商产业链大宗卫星等多源数据进行训练,使其具备领域通用性。二是构建了可溯因的标准化因子和归因解释体系,为投资决策提供支持。三是具备高精准、强逻辑的事理分析与推断力,并能够对股票、债券、基金、商品等各类市场事件进行全面的复盘和推演。四是专门设计针对金融行业的语言模型架构,具备准确理解和合理分析金融领域的专业能力。五是背靠数据全生命周期技术栈,为企业提供全套解决方案,助力金融机构实现应用创新。目前,星环科技无涯金融模型已在多家金融监管机构、证券金融客户中使用。将在金融投研、量化投资和智能推理领域为分析师、研究员和投资经理
资源和时间来训练和推理,因此需要强大的硬件设备和计算能力模型在各种领域取得了显著的突破,如自然语言处理、计算机视觉、图像生成和语音识别等。国内模型试用模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发模型。星环科技作为国内领先的数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建模型是指具有庞大参数数量和更高复杂度的深度学习模。模型通常拥有数百万、甚至数十亿的参数。与小模型相比,模型能够更充分地学习数据的细节和特征,从而提高模型的性能和准确。模型通常需要更多的计算自己的模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予模型“长期记忆”,打破通用模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理
国内人工智能模型的发展是近年来中国科技领域的一个重要趋势。这些模型在自然语言处理、计算机视觉、语音识别等多个领域展现出强大的能力,能够处理复杂任务并提供高质量的智能服务。国内的人工智能模型通常具有以下特点:规模数据训练:利用海量数据进行深度学习训练,以捕捉复杂的模式和特征。跨领域泛化能力:能够在不同场景下灵活应用,适应多种需求。高性能计算支持:依赖于高性能计算资源和优化算法,确保高效运行。行业定制化:针对特定行业需求进行优化,如金融模型专注于市场分析和风险管理。
模型语料库是一种基于规模语料数据的数据仓库,用于训练和部署自然语言处理(NLP)模型。这些语料库包含了各种类型的文本数据,如新闻文章、书籍、网页等,为机器学习算法提供了丰富的训练材料模型语料库的价值提升模型性能:模型语料库提供了丰富的语言样本,使得NLP模型能够学习到更广泛的知识和语言模式,从而提升模型的性能和准确性。促进知识共享:模型语料库的开放性和共享性使得不同领域的研究者可以共享知识,加速了学术研究和应用开发的进程。推动产业发展:模型语料库在各个行业中都有广泛的应用,如自然语言处理、智能客服、机器翻译等,为产业发展提供了强大的支持。星环科技加入中国大模型语料数据联盟:做好等数据全生命周期中每个环节提供基础软件及服务,同时,针对人工智能等高速发展态势,也将新形态下多模语料、AI模型前、中、后数据也纳入到了“数据”范畴,以数据为中心,关注模型的前中后期的数据管理。数据资源“开发者”在2023全球数商大会上,星环科技作为中立的技术提供方加入中国大模型语料数据联盟。星环科技作为上海数据交易所首批签约的技术驱动型数商,为数据的集成、存储、治理、建模、分析、挖掘和流通
行业有诸多落地案例。同时星环科技积极参与行业共建,为中国大模型生态发展贡献智慧力量。星环科技参编了国内首个金融行业大模型标准——《面向行业的规模预训练模型技术和应用评估方法第1部分:金融模型》,为星环科技致力于打造企业级数据基础软件,围绕数据全生命周期提供基础软件与服务。在模型领域,星环科技发布了一系列的工具产品供用户使用,助力企业抓住模型时代的新机遇。工具链方面,发布了模型外挂存储分布式向量数据库Hippo、模型预训练微调工具SophonLLMOps及自动化知识库构建工具TKS。预训练模型方面,发布了金融模型星环无涯(Infinity)和数据分析模型星环求索(SoLar)。用户可以通过星环科技自动化知识工程、多模态数据处理等技术,有效降低企业构建自有模型应用的门槛,并不断促进我国大模型生态的持续繁荣。星环科技模型产品目前已经在政府、金融、运营商、制造、能源等多个10家单位联合发起的中国大模型语料数据联盟,致力于做好数据资源“开发者”。此外星环科技在模型领域也收获了一系列荣誉奖项:入选“2023中国人工智能模型企业50强”、星环科技无涯金融模型
星环模型相关产品星环无涯金融模型-TranswarpInfinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融行业智能投研模型无涯Infinity。星环科技基于模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度的智能投研新范式。星环语言模型运营平台-SophonLLMOps为了帮助企业用户基于模型构建未来应用,星环科技推出了模型持续提升和开发工具SophonLLMOps,实现领域模型的训练、上架和迭代。SophonLLMOps服务于模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。星环知识中台-TranswarpKnowledgeStudio星环知识中台(TKS)针对政务、工业、能源等领域定制化应用场景,结合语言模型技术,提供一站式、全流程解决方案。帮助客户高效地创建业务场景并进行系统
办公领域政务模型的应用,也为政府内部办公带来了智能化的变革,有效提升了办公效率和协同能力。在智能文档处理方面,通针对公文撰写等细分场景,提供材料写作、AI续、AI润色、自定义风格写作等功能,显著政务模型:开启数字政府新时代政务模型的崛起政务模型是基于规模数据训练和深度学习算法构建的人工智能模型,专门针对政务领域的复杂业务和多样需求进行优化。它能够理解和处理政务领域的各类信息,包括政策文件、法律法规、业务数据等,为政府提供智能化的决策支持和高效的服务。与传统政务信息化系统相比,政务模型具有更强的学习能力和适应性,能够快速应对不断变化的政务需求和复杂的社会问题。丰富多元的应用场景(一)政务服务领域在政务服务领域,政务模型的应用正深刻改变着传统的办事模式,为企业和群众带来了极大的便利。在政策解读方面,政务模型也发挥着重要作用。以往,政策文件往往专业性较强,普通群众理解起来存在一定困难。而现在,借助政务模型的自然语言处理能力,可以将复杂的政策文件转化为通俗易懂的语言,以问答的形式为群众提供精准的政策解读。(二)城市治理领域城市治理是一个复杂的系统工程,涉及交通、环境
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...