万亿大模型的应用场景

行业资讯
大语言模型应用场景
大语言模型的应用场景非常广泛,以下是一些主要的领域:自然语言处理(NLP):大语言模型在自然语言处理领域有广泛的应用,如文本分类、情感分析、机器翻译等。计算机视觉(CV):大语言模型可以应用于计算机,预测其可能感兴趣的内容,并为其提供个性化的推荐。金融领域:大语言模型在金融领域也有着广泛的应用,如投资策略、风险评估、财务报告分析等。除了上述提到的应用场景,大语言模型还可以应用于其他领域,如医疗、法律等。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。视觉任务,如图像和视频分类、目标检测、图像生成等。语音识别:大语言模型可以用于语音识别,将语音转化为文字,以及语音合成,将文字转化为语音。推荐系统:大语言模型可以用于推荐系统,根据用户的历史行为和偏好
万亿大模型的应用场景 更多内容

行业资讯
大模型的应用场景
大模型目前的应用场景大致可以分为两类,一类是利用大模型的自然语言理解能力把它作为人机交互的接口,即大模型+应用;第二类场景是用大模型来构建现有应用的大脑、决策机制,利用它的需求理解、分析、推理的能力来构建应用,做一个中枢或者控制器。未来,每个企业都能打造自己的专属大模型,而企业的每个个人都可以拥有自己的AI助理来帮助提升效率,大模型在各行各业的应用将会推动一次产业革命,从而提升整个社会的生产效率。作为一家企业级大数据基础软件开发商,星环科技致力于为行业提供大模型应用构建的一系列工具,以及在擅长的领域研发领域基础大模型,助力企业抓住大模型时代的新机遇。为了帮助企业用户基于大模型构建应用,星环科技推出了大模型持续提升和持续开发工具SophonLLMOps,为用户打通从数据接入和开发、提示工程、大模型微调、大模型上架部署到大模型应用编排和业务效果对齐的全链路流程,从而实现针对大模型的数据和分析的持续提升。同时星环科技还推出了星环无涯金融大模型Infinity、大数据分析大模型SoLar“求索”两大领域大模型。星环无涯融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的理解和生成能力

行业资讯
大模型的主要应用场景

行业资讯
AI大模型的应用场景
AI大模型的应用场景非常广泛,涵盖了多个行业和领域。以下是一些具体的应用场景:金融领域风险评估与信用评级:通过对海量金融数据的分析,包括客户的交易记录、信用历史、收入情况等,AI大模型能够更准确地投资建议和组合优化方案,帮助投资者做出更明智的投资决策。金融欺诈检测:识别和防范各类金融欺诈行为,如信用卡盗刷、保险欺诈、洗钱等。通过对交易数据和用户行为的实时监测和分析,AI大模型能够发现异常模式和和兴趣,推荐适合的学习资源,如教材、课件、视频、练习题等,丰富学生的学习素材,提高学习资源的利用效率。虚拟教学环境与仿真实验:创建虚拟的教学环境和仿真实验场景,让学生在虚拟世界中进行实践操作和体验,提高、公众舆情等,及时了解公众的意见和诉求,为政府决策提供参考依据,帮助政府部门更好地应对突发事件和社会热点问题。公共安全与应急管理:在公共安全和应急管理领域发挥重要作用,如犯罪预测、灾害预警、应急救援等评估客户的风险水平和信用等级,为金融机构的贷款审批、信用卡发放等业务提供决策依据,降低违约风险。投资决策辅助:分析市场行情、宏观经济数据、公司财报等信息,预测股票、债券等金融资产的价格走势,为投资者提供

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。凭借优异的产品性能和出色的落地表现,StellarDB获得了多家行业权威机构认可,在大数据产业峰会和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时

行业资讯
医疗大模型的应用场景
医疗大模型的应用场景非常广泛,包括但不限于以下几个方面:生命科学领域:大模型可以用于进行蛋白质语言理解和生成任务,以及赋能DNA/RNA等生命组学计算,从而辅助生物医学研究开发工作。药械研发领域:大、智能化。医疗保险领域:大模型可以助力医疗保险数据处理自动化和信息咨询,落地场景向智能核保核赔延伸。医学教育领域:大模型可以模拟不同类型的病人与医生进行对话,带来提高学生知识、技能和能力的新机会。随着人工智能技术的不断发展,医疗大模型将会在更多领域得到应用,为医疗行业的发展带来更多可能性。模型可以服务于药品和器械从研发到上市的各个环节,包括药物发现、临床前研究、临床试验、注册申请、上市后再评价等。医疗问答和智能问诊领域:大模型可以通过对话方式回答用户的医疗健康问题,提高问诊准确性和智能化水平。辅助诊疗和临床决策领域:大模型可以预测疾病风险、生成诊断和治疗建议,为临床决策提供支持。个人健康管理领域:大模型可以帮助个人在非医院场景中解决健康问题,推动个人健康管理迈向主动化、个性化

行业资讯
数据要素的应用场景
数据要素的应用场景非常广泛,涉及多个行业和领域。以下是一些具体的应用场景:智能制造:在汽车制造企业中,数据要素被用来提升智能制造水平。通过融合设计、仿真、实验验证数据,培育数据驱动型产品研发新模式通行效率。应急管理:数据要素在应急管理中应用,通过对多元数据的分析,建立具有安全态势感知能力的数字城市和数字乡村,强化社会风险研判和预警能力。气象服务:数据要素在气象服务中应用,通过打通车企、第三方平台、运输企业等主体间的数据壁垒,促进道路基础设施数据、交通流量数据、驾驶行为数据等多源数据融合应用,提高智能汽车的创新服务水平和主动安全防控能力。智慧城市:数据要素在智慧城市建设中应用,通过数据的高效利用,推动城市治理的现代化。绿色低碳:数据要素在绿色低碳领域应用,通过数据的分析和应用,推动绿色低碳发展。识别,优化信贷业务管理和保险产品设计。科技创新:数据要素在科技创新领域应用广泛,包括数字广告、图像识别、语言识别、数字信贷、无人驾驶、人脸识别、机器翻译、医学图像处理等。医疗健康:在医疗行业,数据要素

行业资讯
大模型应用场景有哪些?
随着数据的快速增长和计算能力的提升,大模型在各个领域发挥着越来越重要的作用。下面将介绍几个常见的大模型应用场景。自然语言处理(NLP):在自然语言处理领域,大模型被广泛用于语言模型、机器翻译、问答模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代数据集上进行训练,大模型可以提取更深入和高级的特征,从而提高图像识别和理解的准确性。金融风险管理:在金融领域,大模型被应用于风险预测、市场预测和欺诈检测等方面。通过处理大量的市场数据和交易记录,大模型可以分析市场趋势和风险,并提供有力的决策支持。医疗诊断:在医疗领域,大模型被应用于疾病诊断、影像解读以及药物研发等方面。通过处理大量的患者数据和医学图像,大模型可以辅助医生进行准确的诊断和治疗。交通与在各个领域都有广泛的应用。通过处理大规模数据集和复杂模型,大模型能够提供更准确和智能的分析和决策支持。随着技术的不断发展,大模型将在更多领域发挥重要作用,并对社会经济发展带来积极的影响。星环科技提供大

行业资讯
多模态大模型应用场景
多态大模型应用场景广泛,涵盖自然语言处理、计算机视觉、多媒体处理、跨模态搜索推荐、智能办公、电商、娱乐、教育、自动驾驶、医疗、智能安防、金融、人机交互以及虚拟现实等领域。以下是一些主要的应用场景的历史喜好信息,在不同模态的数据中提供个性化推荐,如根据看过的电影推荐相关商品。跨模态问答:在问答系统中,多模态大模型能够处理和回应跨模态的查询,如图像和文本的组合查询。办公自动化:多模态大模型应用偶像等场景中,创造沉浸式游戏体验和支持虚拟偶像实时交互。教育:在教育领域,多模态大模型提供生动的学习资源和个性化学习建议,辅助智能教学。医疗健康:多模态大模型在疾病诊断、治疗方案制定等场景中,结合医学影像、病历文本和生理信号等数据,实现更准确的诊断。智能安防:在视频监控、异常行为检测等场景中,多模态大模型结合图像、声音和行为分析等数据,实现智能化监控。金融:多模态大模型在风险评估、欺诈检测等场景中,分析用户的交易记录、行为模式等数据,识别潜在的金融风险。人机交互:在智能语音助手、智能机器人等场景中,多模态大模型结合语音、图像和文本信息,实现更自然、智能的人机交互。虚拟现实与增强现实:多模态大模型在VR和AR领域中,结合多种模态数据,提供更加沉浸式的体验。

行业资讯
常见的图数据库应用场景有哪些?
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景等众多行业,用于反洗钱、风险控制、营销等多种场景。凭借优异的产品性能和出色的落地表现,StellarDB获得了多家行业权威机构认可,在今年的大数据产业峰会上,中国信通院重磅发布了2022大数据十大科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图
猜你喜欢
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。