文本分类大模型

行业资讯
什么是大语言模型?
大语言模型(LargeLanguageModel)是指使用大量文本数据训练的深度学习模型,可以生成自然语言文本或理解语言文本的含义。大语言模型可以处理多种自然语言任务,如文本分类、问答、对话等,是人工智能领域非常重要的应用技术。大语言模型的应用非常广泛,包括但不限于:文本分类:大语言模型可以通过对文本内容的整体把握和理解,将文本进行分类。例如,对一篇文章进行主题分类、情感分类等。问答系统:大语言模型可以根据问题文本生成对应的答案文本,实现问答系统的功能。机器翻译:大语言模型可以在源语言和目标语言之间进行翻译,实现跨语言沟通。文本生成:大语言模型可以根据特定的输入,生成符合要求的文本。例如,根据一段输入文本生成相应的摘要、续写等。大模型持续开发和训练工具为了满足企业应用大语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的大模型持续开发和训练工具——SophonLLMOps。这款工具旨在帮助企业构建自有的行业大模型,通过大模型基础设施打造面向未来的、具备“新型人机交互”且“敏捷可持续迭代”的人工智能应用。针对大语言模型及其衍生数据、模型和应用方面的问题
文本分类大模型 更多内容

行业资讯
LLM 大语言模型
大语言模型(LLM)是指使用大量文本数据训练的深度学习模型,可以生成自然语言文本或理解语言文本的含义。大语言模型可以处理多种自然语言任务,如文本分类、问答、对话等。大语言模型通常使用大规模的语料库进行训练,这些语料库包含了大量的文本数据,涵盖了各种领域和语言风格。通过训练,大语言模型可以学习到文本数据的内在特征和规律,从而在各种自然语言处理任务中表现出色。大语言模型的优势在于其能够处理复杂的自然语言任务,并且生成的文本质量较高。此外,由于大语言模型经过了大量的文本数据训练,因此其具有很好的泛化性能,可以适应多种场景和应用。LLM大语言模型的应用场景主要集中在自然语言处理、机器翻译、智能写作、智能客服、智能语音助手、自然语言推理等领域。自然语言处理:LLM可以用于文本生成、情感分析、语言翻译等领域,帮助人们快速生成高质量的文章、简历、报告等。机器翻译:特别是在处理长文本和专业术语时效果更为显著。智能写作助手:可以利用LLM的文本生成能力,帮助人们快速生成高质量的文章、简历、报告等。智能客服机器人:能够帮助用户解决问题和提供相关服务。这类应用可以在电子商务、在线教育、医疗健康等领域得到

行业资讯
数字大模型
,提高应用的智能化水平和用户体验。数字大模型应用自然语言处理:数字大模型在自然语言处理领域有着广泛的应用,如文本分类、情感分析、命名实体识别、问答系统等。它能够理解和处理自然语言文本,为各种自然语言处理数字大模型是一种基于大量数据训练的人工智能模型,具有强大的语言理解、文本生成、知识推理等能力。数字大模型特点海量数据训练:数字大模型通常需要海量的数据来进行训练,这些数据涵盖了各种领域和主题,如新闻加速模型的训练和推理过程,提高模型的效率和响应速度。多种应用场景:数字大模型具有广泛的应用场景,如自然语言处理、智能客服、机器翻译、文本生成、知识图谱等。它能够为各种应用提供强大的语言理解和生成能力和用户满意度。机器翻译:数字大模型在机器翻译领域也有着重要的应用,能够实现不同语言之间的自动翻译。它能够理解源语言文本的语义和语法结构,并将其准确地翻译成目标语言文本,提高翻译效率和质量。文本生成:数字大模型可以用于文本生成任务,如文章写作、故事创作、诗歌生成等。它能够根据给定的主题或关键词生成连贯、有逻辑的文本内容,为内容创作提供新的思路和方法。知识图谱:数字大模型可以与知识图谱技术相结合,为

行业资讯
LLM模型,什么是LLM模型?
LLM模型是一个通过大量文本数据训练的深度学习模型。LLM模型可以生成自然语言文本,也能够理解语言文本含义。具体来说,LLM模型可以用于处理多种自然语言任务,例如文本分类、问答以及对话等。由于其能力具备大数据行业需求理解、推理、各类(含多模型)结构化查询语言和OpenCypher代码生成、文本生成、嵌入向量生成、知识推理等能力。借助这一领域大模型,企业的业务人员、数据分析人员以及业务管理者只需在自然语言处理领域的广泛应用,LLM模型被视为进一步发展人工智能的重要途径之一。LLM模型的训练过程通常使用大量的文本数据,例如互联网上的文章、新闻、社交体数据等。通过这些数据的训练,模型可以从中学习到语言的结构、语法规则、上下文信息等。这样学习使得模型能够生成符合自然语言规则的文本,并能够理解人类语言的含义。在文本生成方面,LLM可以生成各种类型的文本,如文章、评论、故事等。更进一步,LLM可以根据给定的前提或问题来生成响应,从而备对话能力。这种生成式模型的应用非常广泛,例如智能助手、自动回复系统等。除了文本生成,LLM模型还可以用于语言理解任务。通过输入一段自然语言的文本,模型可以理解文本

行业资讯
llm大模型是什么?
LLM即LargeLanguageModel,意为大型语言模型。LLM是一种基于深度学习技术的自然语言处理模型,其核心是通过海量的文本数据训练大规模的神经网络,以学习语言的语法、语义等知识,从而训练:LLM需要使用大量的文本数据进行训练,数据规模通常达到数十亿甚至数万亿个单词,涵盖了各种领域和主题,如新闻、小说、论文、百科知识等,以便让模型学习到丰富的语言知识和语义信息。大规模参数:具有深入理解,包括语义理解、语法分析、情感分析等,并能够生成高质量的文本内容,如文章写作、故事创作、对话生成等。泛化能力:可以应用于多种自然语言处理任务,如文本分类、机器翻译、问答系统等,无需针对每个过程中,模型会根据输入的文本数据,利用自监督学习和半监督学习等方法,自动发现语言中的模式和规律,如词语的搭配、句子的结构、语义的关联等,进而调整模型的参数,以实现对语言的准确理解和生成。LLM特点海量数据具体任务进行大量的定制化训练,具有较好的通用性和泛化能力。LLM训练过程数据收集与预处理:收集海量的文本数据,并进行清洗、去噪、标注等预处理操作,以提高数据的质量和可用性。预训练:使用预处理后的大规模无

行业资讯
LLM 大模型,什么是LLM 大模型?
规律,并根据提示自动生成符合这些规律的内容。LLM模型通常拥有数十亿到数万亿个参数,能够处理各种自然语言处理任务,如自然语言生成、文本分类、文本摘要、机器翻译、语音识别等。LLM大模型的应用非常泛,通过大型语言模型(LargeLanguageModel,简称LLM)是一种基于深度学习的自然语言处理(NLP)技术,LLM大模型通常基于神经网络模型,特别适合处理大规模的文本数据,可以发现语言文字中的日常工作,帮助企业更好地应对复杂的市场环境和业务需求,持续促进整体行业的降本增效与科技创新。求索具备大数据行业需求理解、推理、各类(含多模型)结构化查询语言和OpenCypher代码生成、文本生成、嵌入预训练和微调的方式,可以用于生成文本,有很强的语言表达能力,能够生成流畅、连贯的句子,并且在许多自然语言处理任务中取得了很好的效果。LLM大模型还被广泛应用于机器翻译任务。通过使用大规模的双语对齐数据进行预训练,LLM大模型可以在源语言和目标语言之间建立起一个中间表示空间,从而实现高质量的翻译。相比传统的基于统计的机器翻译模型,LLM大模型能够更好地处理长句子、复杂的语法结构和上下文信息,从而

行业资讯
大模型训练语料
大模型训练语料是指用于训练人工智能大模型的文本数据集合。特点大规模性:大模型通常需要海量的语料来学习丰富的语言知识和语义信息,以提高模型的泛化能力和性能。一般来说,训练数据规模越大,模型能够学习到的质量和标注准确性,可直接用于特定任务的模型训练或作为预训练数据的一部分。书籍、文献和论文:包括各种专业书籍、学术文献、研究论文等,这些文本数据经过专业编辑和审核,质量较高,蕴含着丰富的专业知识和深度的语言模式和特征就越丰富。多样性:涵盖多种类型的文本,如新闻、小说、论文、诗歌、社交媒体帖子、百科知识等,有助于模型学习不同风格、主题和语境下的语言表达方式,从而更好地应对各种自然语言处理任务。高质量语料时,必须遵守相关的法律法规,尊重知识产权,确保语料的获取和使用是合法合规的,避免侵犯他人的版权、隐私等权益。常见来源互联网公开数据:从网页、新闻网站、博客、论坛等互联网平台上收集大量的文本数据。这些语言表达,对于训练具有专业领域知识的大模型非常有价值,但需要注意版权问题。社交媒体数据:社交媒体平台上的用户生成内容,反映了当下社会热点、用户情感和各种生活场景,能够为模型提供更贴近实际应用的语言样本

行业资讯
AIGC大模型,什么是AIGC大模型?
结构,通过反向传播算法进行训练,可以用于多种自然语言处理任务,如文本分类、情感分析、命名实体识别等。AIGC大模型是一种非常强大的自然语言处理工具,可以广泛应用于自然语言处理、自然语言生成、智能客服、智能AIGC大模型是一种基于深度学习技术的自然语言处理模型,AIGC大模型使用大规模的语料库进行训练,可以自动从大量的文本数据中学习语言的语法、语义和上下文信息。AIGC大模型采用了多层的神经网络具备大数据行业需求理解、推理、各类(含多模型)结构化查询语言和OpenCypher代码生成、文本生成、嵌入向量生成、知识推理等能力。借助这一领域大模型,企业的业务人员、数据分析人员以及业务管理者只需使用推荐等多个领域。但是,由于该模型需要大量的计算资源和数据资源进行训练,因此其训练和部署成本较高,需要专业的技术和团队支持。大模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发大模型。星环科技作为国内领先的大数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己的大模型,星环科技推出了机器

行业资讯
大模型语料
大模型语料是指用于训练大模型的文本数据,以下是关于大模型语料的详细介绍:语料的重要性决定模型性能:高质量、全面、多样的语料库能够训练出性能更好、泛化能力更强的模型。而低质量的语料可能导致模型学习到场景需要特定的语料来训练模型,以确保模型能够准确理解和处理相关问题,提供符合行业标准和法规要求的有效服务。语料的来源互联网公开数据:包括新闻文章、博客、论坛、社交媒体等平台上的大量文本内容,是大模型语料数据、业务文档、交易记录等,经过整理和加工后可用于训练特定行业的大模型,如金融机构的交易数据、医疗企业的病历数据等。语料的分类按语言种类分:单语语料:只包含一种语言的语料,如纯中文语料、纯英文语料等等对语料进行自动标注、分类、摘要等处理,提高语料处理的效率和准确性,同时通过数据增强技术等对现有语料进行扩充和优化。跨领域合作与共享:加强不同领域、不同机构之间的合作与交流,实现语料的共享和互补,共同推动大模型语料库的建设和发展,例如高校、科研机构与企业之间的合作。的重要来源之一。如百度、新浪等网站的新闻资讯,微博、知乎等社交平台的用户生成内容。学术文献和研究报告:来自各个领域的学术期刊、会议论文、研究报告等,具有较高的专业性和权威性,能为大模型提供深入的知识和

行业资讯
大模型语料库构建
正面、负面、中性。对于影评、产品评论等语料,情感标注尤为重要。四、语料分类与筛选主题分类根据语料的主题内容将其分类到不同的类别中,如科技、文化、体育、娱乐等。可以利用文本分类算法,如支持向量机、朴素大模型语料库构建涵盖语料收集(含多渠道来源)、语料清洗、语料标注、语料分类与筛选以及语料更新与维护等多方面工作,各环节相互配合助力大模型训练与应用。一、语料收集互联网数据采集利用网络爬虫从各种网页可以使大模型保持对新知识的学习能力,适应时代的变化。数据验证与修复在更新过程中,对新加入的语料进行验证,检查是否存在错误或不符合要求的内容。同时,对已有的语料进行检查,修复可能出现的问题,如由于数据源更新导致的链接失效、文本内容变化等情况。、新闻网站、社交媒体平台、博客等收集文本数据。例如,从知名新闻媒体网站采集新闻报道,这些内容涵盖了政治、经济、文化等众多领域的最新信息。在爬取过程中,需要注意遵守网站的使用规则和相关法律法规,如机器人包含一些未被数据库收录的学术资料,如学位论文、内部研究报告等。书籍数字化内容将经典著作、畅销书等书籍内容进行数字化处理后加入语料库。这些书籍内容丰富、语言规范,可以为大模型提供深度的知识和良好的语言表达
猜你喜欢
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...