微调大模型一般多长时间

星环模型运营平台
星环模型运营平台(Sophon LLMOps)是星环科技推出的企业级模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将模型落地到生产和业务中去。Sophon LLMOps打通并优化了语料接入和开发、提示工程、模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。

微调大模型一般多长时间 更多内容

一般来说,智慧政务包括智能办公、智能监管、智能服务、智能决策四领域。而以上所有服务的构建,都需要个强大的数字底座来提供计算、存储、算法等基础能力支撑。星环科技(星环信息科技)通过智慧政务数字底座。其优势具体体现在:数字底座,打造坚实的技术保障:提供自主研发、技术可控的多模态数据存储计算引擎、数据开发平台、人工智能分析平台、数据云平台以及各类数据库产品,打造数字底座,为智慧政务业务服务提供坚实的技术能力保障。数据归集,打破各部门数据壁垒:打通异构数据库,帮助客户归集多部门全量、增量数据,形成统存储的多源异构数据湖。数据治理,提升数据可用价值:利用数据治理产品,帮助客户进行数据全
模型的训练过程是个复杂且计算密集型的任务,以下是一般的训练步骤:数据收集与预处理收集海量数据:从各种渠道收集大量的数据,如互联网上的文本、图像、音频等。这些数据应具有多样性和代表性,以涵盖不同的监督数据训练:在预训练阶段,使用海量的无监督数据对模型进行训练,让模型自动从数据中学习语言、图像等的一般特征和模式。优化目标函数:定义合适的目标函数来指导模型的训练,如在语言模型中常用的交叉熵损失函数。通常会使用高性能的GPU集群、TPU或专用的人工智能芯片来加速训练过程,以缩短训练时间。监督微调使用有监督数据微调:在预训练完成后,根据具体的任务,使用相对较少的有监督数据对模型进行微调。例如,在情感分析任务中,使用带有情感标签的文本数据对预训练模型进行微调,使模型能够更好地适应情感分析任务的特点和要求。调整模型参数:在微调过程中,只对模型的部分参数进行调整,通常是在预训练模型的基础上添加些特定任务的层或修改些顶层的参数,以避免破坏预训练模型中已经学习到的通用特征和知识,同时使模型能够更好地拟合特定任务的数据。选择合适的微调策略:根据任务的特点和数据的分布,选择合适的微调策略,如不同的学习
模型高效微调是通过参数高效微调技术,如加性微调、选择性微调、重参数化微调及混合微调等方法,在减少计算成本和训练时间的同时,提升模型在下游任务中的性能表现,使其能更好地适应各种特定应用场景。高效微调的优势节省计算资源:传统全参数微调计算成本高,而高效微调只调整小部分参数,降低了对计算资源的需求。缩短训练时间:减少了需训练的参数数量,从而加快模型训练速度,让研究人员和开发者能更快速地进行实验和迭代单个预训练模型适应多种任务,无需为每个任务训练多个模型,提高了模型的通用性和可扩展性。应用案例自然语言处理:如情感分析、文本分类、机器翻译等任务,通过高效微调可使模型在特定领域的文本数据上表现更优,为机器人:针对特定行业或领域的知识和问题,对模型进行微调,使其能够更准确地理解用户咨询并提供专业的解答和建议,提高智能客服和聊天机器人的服务质量和效率。,尝试不同模型、数据集和技术。提升模型性能:在有限的数据和计算资源下,高效微调可使模型更好地适应特定任务,避免过拟合等问题,提高模型在下游任务中的性能表现。便于多任务适配:可通过集成任务特定参数,使
模型微调流程包含明确任务与目标、选基底模型、准备数据集、选目标函数、微调模型、迭代调整与更新、评估性能以及应用部署这几个主要步骤。模型微调一般可分为以下步骤:1.明确任务与目标确定具体的应用个合适的预训练模型作为基底模型。3.准备数据集收集数据:根据任务需求收集相关的数据,如对于文本分类任务,需要收集带有分类标签的文本数据;对于机器翻译任务,需要收集源语言和目标语言对应的文本数据等模型最后层增加投影层,并根据具体的回归或分类任务选择相应的损失函数,如均方误差损失、交叉熵损失等。5.微调模型加载预训练模型:使用相应的库和工具加载选定的预训练模型及对应的分词器等。配置微调参数:定义场景和任务需求,例如是进行文本分类、情感分析、机器翻译,还是其他自然语言处理任务等,以便后续选择合适的数据集和评估指标。2.选择基底模型综合考虑模型的性能、可扩展性、部署成本及任务适应性等因素,选择。数据预处理:对收集到的数据进行清洗、去噪、重复数据删除等操作,确保数据的质量。然后根据所选模型的要求,对文本进行分词、编码等预处理操作,并将数据划分为训练集、验证集和测试集。4.选择目标函数根据监督
行业资讯
模型微调
更好地适应特定领域的需求和特征。下是模型微调一般步骤和方法:准备工作选择合适的预训练模型:需综合考虑模型的大小、架构以及与目标任务的适配性。准备训练数据集:对数据进行收集、标注、预处理等操作,确保模型微调(Fine-tuning)是指在已经预训练好的大型语言模型基础上,使用特定的数据集进行进步的训练,以使模型适应特定任务或领域的过程。微调的核心目的是赋予模型更加定制化的功能,使其能够在由(指令,输出)对组成的数据集上进步训练语言模型的过程,有助于弥合模型的下个词预测目标与遵循人类指令目标之间的差距,可视为有监督微调种特殊形式。训练,更新全部参数。高效参数微调则期望用更少的资源完成模型参数更新,包括只更新部分参数或通过对参数进行结构化约束,如稀疏化或低秩近似来降低微调的参数数量.提示微调、指令微调、有监督微调:指令微调是通过数据的质量和多样性。数据应与目标任务相关,并进行清洗以去除噪声和重复数据。微调过程数据集分割与标记:通常将数据集划分为训练集、验证集和测试集。训练集用于训练模型,验证集用于调整模型参数,测试集用于评估
行业资讯
模型微调
模型微调个复杂的过程,涉及多个步骤和技术。以下是模型微调的主要方法和步骤:数据准备选择数据集:根据目标任务选择相关性高的数据集,例如,如果目标是提高文本分类的准确性,那么应选择包含大量分类标签的文本数据。数据预处理:对数据进行清洗、分词、编码等预处理操作。选择基础模型预训练模型选择:选择个预训练好的语言模型。设定微调参数超参数设置:设定学习率、训练轮次(epochs)、批处理大小:仅更新模型中的部分参数,显著降低训练时间和成本.微调后的评估和部署模型评估:在训练过程中,使用验证集对模型进行定期评估,并根据评估结果调整超参数或微调策略。测试模型性能:在微调完成后,使用测试集对最终的微调模型进行评估,以获得最终的性能指标。模型部署:将微调完成的模型部署到实际应用中,并进行进步的优化和调整,以满足实际需求。(batchsize)等超参数。其他超参数:根据需要设定权重衰减、梯度剪切等。微调流程加载模型和权重:加载预训练的模型和权重。模型修改:根据任务需求对模型进行必要的修改,如更改输出层。损失函数和优化器
模型预训练+微调种先利用大量无监督数据进行预训练,然后再根据有标注的数据进行微调的机器学习方法。目的是提高模型在训练数据上的表现,从而在复杂任务中获得更好的性能。预训练是指在大量无标注数据上对在于能够节省大量人力和时间成本。相较于传统的深度学习方法需要大量的标注数据和训练时间,使用模型预训练+微调方法可以大大提高模型的训练效率和准确性,并使得模型能够在更广泛的应领域中发挥作用。在自然语言模型进行训练。这种方法利用了规模数据的特点,学习了模型中诸如词汇表达、句法结构和上下文信息等普遍规律。同时,预训练还可以为后续的微调任务提供有用的初始化参数,使得模型的表现更加出色。预训练通常有两种数据来调整模型的参数。该方法通常采用反向传播算法,使得模型能够根据有标注数据的训练样本进行反向优化微调的目的是让模型更好地适应目标任务,例如文本分类、情感分析和语音识别等。模型预训练+微调的主要优点处理领域中,模型预训练+微调已经被用于很多任务,例如语言模型、机器翻译、问答系统和文本分类等。星环语言模型运营平台-SophonLLMOps为了帮助企业用户基于模型构建未来应用,星环科技推出了
模型微调个关键步骤,用于将预训练模型适应于特定任务或领域。这过程通常涉及以下步骤:准备阶段选择合适的预训练模型:需综合考量模型的架构、参数量以及与目标任务的适配性等因素。准备训练数据集模型参数更新,包括只更新部分参数或通过对参数进行结构化约束,如稀疏化或低秩近似来降低微调的参数数量。提示微调、指令微调、有监督微调:指令微调是通过在由(指令,输出)对组成的数据集上进步训练语言加速训练过程。微调实施阶段数据集划分:通常将数据集按照定比例划分为训练集、验证集和测试集。训练集用于模型的训练,验证集用于在训练过程中调整模型的参数和评估模型的性能,测试集则用于最终评估模型的泛化能力。设定微调目标与参数调整:明确微调的具体目标,如提高模型在某特定任务上的准确率、召回率等。同时,确定要调整的参数,包括学习率、优化器、正则化参数等。执行微调:在训练循环中依次进行前向传播、计算损失模型的过程,有助于弥合模型的下个词预测目标与遵循人类指令目标之间的差距,可视为有监督微调种特殊形式。
行业资讯
模型微调
模型微调是指在预训练好的模型基础上,使用特定领域的数据进行进步训练,以适应特定任务或场景的过程。这种微调可以优化模型在特定任务上的表现,使其更加精准和专业。微调的作用在于调整模型的参数,使其更好地理解并处理特定领域的知识和语言模式。指令微调与使用特定领域数据进行的微调有联系也有区别。指令微调更多关注于调整模型对特定指令的理解和执行能力,而领域数据微调则侧重于让模型适应某领域的语言风格和专业术语。两者都可以看作是模型个性化和专业化的过程。在星环科技的模型中,如果用户希望在金融分析领域使用该模型,可以通过提供金融相关的文本数据进行微调,使模型更好地理解和生成金融相关的报告或分析。星环语言模型运营平台-SophonLLMOps为了帮助企业用户基于模型构建未来应用,,星环科技推出了模型持续提升和开发工具SophonLLMOps,实现领域模型的训练、上架和选代。SophonLLMOps服务于模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。
为什么引入动态图模型?在实际应用过程中很容易可以发现,图数据在很多图数据的应用场景中并不是静态不变的,而是动态演进的,这些场景中包括例如金融反欺诈场景中金融交易网络随着时间的推进而发生的交易变化、交易社群变化等;又比如社交网络中新增用户、用户关注或者取消关注、更改账户信息等。将图数据变化的历史记录下来,不仅可以用于历史数据规律的总结,还可以利用动态图数据进行动态图神经网络相关技术的研究,从而进一步挖掘数据中潜在的数据价值和更加灵活高效的业务场景,譬如预测某一个时刻某一事件是否会发生。动态图模型的动态变化图数据的动态变化主要分为两类,一类是节点或边的属性的值的变化;另一类变化是子图(结构)的变化,如新增/删除点边。这两种图数据的动态变化可以单独发生,也可以同时发生。从图数据的属性变化角度来看,StellarDB5.0.1动态图模型可以记录图中节点或者边属性的所有历史版本(而非新数据覆盖旧数据)。在实际数据开发使用中,还可以结合诸如柱状图、趋势图等对历史数据进行可视化,更加直观、更加适合业务使用。从图数据的子图(结构)的角度来看,StellarDB5.0.1动态图模型还可以返回不同时间子图...
通过beeline或JDBC时,设置参数configquery.langcypher;将查询语言切换为TEoC模式。根据使用场景选择查询模式(默认为immediate模式)immediate模式通常用于并发及短查询场景,查询结果和中间结果通常不超过百万。通过configcrux.execution.modeimmediate;切换。analysis模式通常用于分析场景,创建图、插入数据以及图算法相关的语句必须在该模式下进行。通过configcrux.execution.modeanalysis;切换。
产品文档
4 快速入门
快速上手本章节将引导您快速熟悉StellarDB,并为您初步介绍如何通过KGExplorer和beeline客户端操作StellarDB。其中,"StellarDB初探"一节通过构建一张人物关系图,从零介绍如何在StellarDB进行基本操作;"StellarDB进阶"一节为您提供了内置于StellarDB的《哈利·波特》人物关系图,帮助您进一步探索StellarDB。StellarDB初探使用KGExplorer构建图从Manager页面进入KGExplorer页面。若KGExplorer开启了单点登录,会自动跳转Federation登录页面,按如图方式登录:KGExplorer用戶开启方法以及详细使用说明请查看章节《KGExplorer使用文档》。点击登录后进入KGExplorer主页面。我们首先需要构建图名为"hello_world"的图。在主页面右上角点击创建图按钮开始图谱schema的构建。按照引导填写图基本信息后点击确定进入构建页面。在画布中,我们为"hello_world"图创建Boy和Girl两种类型的点,两种类型的点均包含name、salary、age、single四...
产品文档
7.1 自定义函数
StellarDB支持用户添加自定义函数,添加后可在cypher语句中使用。自定义函数实现自定义函数通过java/scala语言开发,可继承实现两种基类,编译成jar包,通过指定命令加载到StellarDB。需要实现的基类为如下两种,可自行选择继承合适的基类:继承UDF基类继承GenericUDF基类。继承UDF基类该类实现简单,功能较为单一。支持Quark的基本类型、数组和Map。适合实现简单的逻辑。继承org.apache.hadoop.hive.ql.exec.UDF类继承UDF类必须实现evaluate方法且返回值类型不能为void,支持定义多个evaluate方法不同参数列表用于处理不同类型数据。@Description(name="my_plus",value="my_plus()-ifstring,doconcat;ifinteger,doplus",extended="Example:\n>selectmy_plus('a','b');\n>ab\n>selectmy_plus(3,5);\n>8")/***实现UDF函数,若字符串执行拼接,in...
本章节的示例语句均可在示例图my_graph中执行,执行前请先创建示例图my_graph,建图语句如下:creategraphmy_graphwithschema(:Boy{namestring,salarydouble,ageint,singleboolean,birthdaylocaldatetime,reservelong,ratedecimal(38,10),hobbysarray<string>,geoPointgeo<double>})(:Girl{namestring,salarydouble,ageint,singleboolean,birthdaylocaldatetime,reservelong,ratedecimal(38,10),hobbysarray<string>,geoPointgeo<double>})[:Friend{sinceint}][:Likes{sinceint}]graphproperties:{`graph.shard.number`:3,`graph.replication.number`:...
产品文档
5.10 表达式
类型表达式类型例子十进制型整数10,-213十进制小数1.25,3.604E-14,-2.31十进制型长整数199345843592l,-12381543923L任意精度的有符号十进制数123bd,123.31BD八进制整数(0开头)084,-096字符串"星环",'信息科技'布尔类型true,false,TRUE,FALSE数组类型[1,2,3],["星环","信息科技"],[decimal(10.2,3,1),decimal(100.2,3,2)],[localdatetime("2021-01-18T09:50:12.627"),localdatetime("2021-11-18T03:50:12.113")]时间类型localdatetime("2021-01-18T09:50:12.627")Decimal类型decimal(10.2,3,1)地理空间类型point(20.5,30.5),point(-20.5,-30.5)时序类型{localdatetime("2023-01-01T15:16:17")::"nice"},{localdatetime("1997-01-01...
产品文档
3 安装 StellarDB
3.1在TDH平台安装StellarDB3.2StellarDB安装校验3.3StellarDB低版本升级至StellarDB5.0.1
产品文档
5.12 变量声明
声明简介声明是指为特定数据类型的变量分配一定的存储空间,并命名该变量以便引用它;必须先声明变量,然后才能引用它;对声明的变量可以进行赋值操作来改变它的值;声明的变量其作用域是Session级别的。变量声明使用decl关键字声明一个变量必须为变量指定名称和类型,且名称不能与已有的变量名相同。声明但未赋值的变量的默认值为null。变量名声明对大小写敏感。变量声明的语句遵循如下格式:DECL[<variable_name>:<variable_type>];使用方法示例如下表所示:语句说明declx:int;声明一个类型为int的变量xdecls:string;声明一个类型为string的变量sdecll:long;声明一个类型为long的变量ldeclb:boolean;声明一个类型为boolean的变量bdecld:double;声明一个类型为double的变量ddecltime:localdatetime;声明一个类型为localdatetime的变量timedecld1:decimal;声明一个类型为decimal的变量d1decllist1:list[int...
索引是数据库中某些数据的冗余副本,目的是使查询性能更优。作为代价,数据库需要额外存储空间和较慢写入速度,因此决定哪些字段需要索引是一项重要且不易的任务。(新)StellarDB5.0.1版本不再对旧版本使用的manipulatecreate_index和manipulatedelete_index语法进行支持,在新版本中统一使用createindex和dropindex进行索引的创建和删除新增索引CREATEINDEX[IFNOTEXISTS]FOR(LabelName)ON[f1,f2,...];CREATEINDEX[IFNOTEXISTS]FOR[LabelName]ON[f1,f2,...];不支持对TIME_SERIES类型的属性创建索引默认情况下,对同一个Label的某个属性多次创建索引会报错;但如果带有IFNOTEXISTS,则不会抛出任何错误包裹点边LabelName的括号不同,注意区分示例1.在点labelperson的属性name和age上建立索引CREATEINDEXIFNOTEXISTSFOR(person)ON[name,age];示例2.在边labelask...
产品文档
6.1 图计算
StellarDB5.0.1版本对图算法场景进行了大规模改进和提升,内置算法性能得到较大提升。在语法方面,StellarDB5.0.1的内置图算法对于返回的节点,会直接以节点类型返回。因此可以直接使用uid(vertex)访问节点的uid,而不再需要node_rk_to_uid函数进行uid的转换。可以参考PageRank等函数。另外,对于图算法返回的节点,我们也可以灵活的访问其其他属性作为返回值。图计算简介StellarDB的图计算使用TEoC语句调用相应图算法。算法的输入数据为图的点、边数据。当前版本中图计算支持结果返回、结果导出和结果写回。在使用图算法时,使用configcrux.execution.modeanalysis;语句切换到分析模式下使用图算法语句。图数据视图StellarDB支持创建一个可被持久化的视图,用于加速图算法执行过程。创建视图创建视图的语法如下所示:createquerytemporarygraphviewGRAPH_VIEW_NAMEas(v)[e]withGRAPH_ALGO(@GRAPH_VIEW_NAME,VIEW_STORE_PATH,CONFI...