企业多模态数据知识库

星环分布式数据库
星环分布式数据库(Transwarp ArgoDB)是星环科技自主研发的分布式数据库,可以替代Hadoop+MPP混合架构。支持标准SQL语法,提供实时数据处理、存算解耦、混合负载、数据联邦、异构服务器混合部署等领先技术能力。通过一个ArgoDB数据库,就可以满足数据仓库、实时数据仓库、数据集市、OLAP、AETP、联邦计算等各种需求。降低平台复杂性和IT总拥有成本的同时,提升业务响应速度。

企业多模态数据知识库 更多内容

星环科技推出知识库产品TranswarpKnowledgeHub(以下简称TKH),旨在为企业提供一个全面、高效、智能的数据处理和知识管理解决方案。TKH拥有从原始数据导入、模态数据存储、知识构建具备丰富的功能:1.从0-1的模型预训练,帮助模型更好地适应特定的业务需求和数据环境,同时确保数据的安全性和隐私性,提高模型的性能和竞争力。2.模态统一架构:提供企业模态知识存储。TKH星环知识构建:通过自动化知识构建工具,统一管理模态数据:不论是文本、图片、音视频等文件格式,还是政策、法规、年报、新闻、分析报告等多元内容类型,都能够通过嵌入式编码器向量化后存入分布式向量数据库Hippo(KnowledgeasaService,KaaS),将知识的抽取、表达、对齐、融合、存储、检索和应用等环节整合在一起,形成一个完整的服务体系,支持结构化、全文、图谱、向量等不同模态数据,满足企业级的需求。6.基于SQL的自动编码:非专业用户在无需掌握数据库编程语言的前提下,能够通过自然语言进行自由的数据查询、分析和展示。(抽取、表达、对齐、融合)、知识检索召回、大模型底座、知识应用等端到端的产品,可提供知识构建、知识存储与服务、知识工程、知识权限管理与灾备、大模型应用助手等关键能力。星环科技知识库产品TKH
知识库知识图谱是两种不同的知识表示形式。知识库是一种结构化的数据存储,包含了关于一个特定领域的实体属性和关系的信息,并提供了对这些信息的查询和更新。知识库可以使用关系型数据库或图数据库来实现,适用于规模数据的存储和查询。知识图谱是一种用图形方式表示知识的结构,它包含了实体、属性和关系的信息,但不同于知识库的是,知识图谱是基于本体论的,可以从不同的角度描述实体和关系之间的丰富语义信息。知识图谱可以作为知识管理、自然语言理解、推理和智能应用的基础,也可以帮助人们快速了解各种领域知识的复杂关系。知识库知识图谱都是将知识整合和表示的有效方式,但是它们的表示方式和应用场景不同。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、模态知识存储与融合、形式知识计算和推理以及维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环
行业资讯
大模型知识库
信息,生成自然语言回答。与传统知识库的区别知识表示与存储:传统知识库主要以结构化数据形式存储知识,如实体、属性、关系等;而大模型知识库采用非结构化文本数据,能处理更广泛的知识形式,如文本、图像、音频等。智能化程度:传统知识库智能化程度相对较低,主要提供信息检索功能;大模型知识库具有更高的智能化程度,可进行知识推理、问答生成等,还能根据用户历史行为和偏好进行个性化推荐。功能特点多模态解析:能够处理图片大模型知识库是一种基于大规模预训练语言模型构建的新型知识库系统,它将大模型的强大语言理解和生成能力与知识库知识储备和管理功能相结合,为用户提供更智能、高效和便捷的知识服务。以下是具体介绍:技术原理更广泛、更丰富的信息,包括文本、图像、音频等多种形式。检索与生成:借助深度学习技术和自然语言处理技术,实现对用户查询意图的自动识别和解析,将用户的自然语言查询转化为模型可理解的输入,并从知识库中检索相关。查询与检索:传统知识库依赖精确匹配或基于规则的语义分析检索信息,用户需准确表达查询意图并使用特定查询语句或关键词;大模型知识库则可自动识别和解析用户的自然语言查询意图,无需考虑特定语法或关键词
星环科技推出知识库产品TranswarpKnowledgeHub(以下简称TKH),旨在为企业提供一个全面、高效、智能的数据处理和知识管理解决方案。TKH拥有从原始数据导入、模态数据存储、知识构建。企业可以根据自身的算力情况,进行不同的方案选择。2.具备丰富的行业知识模型:星环科技在大数据分析领域拥有超过10年的积累,深刻了解该行业的需求和挑战,基于深刻的行业理解能力,在诸如金融、政务、交通、制造等领域,具备完善的知识模型。3.基于自然语言的数据分析能力增强:提升大模型数据分析能力,在语法正确性、数据库方言、语义正确性等方面有重要突破。(抽取、表达、对齐、融合)、知识检索召回、大模型底座、知识应用等端到端的产品,可提供知识构建、知识存储与服务、知识工程、知识权限管理与灾备、大模型应用助手等关键能力。TKH具备以下优势:1.AIPC与云端算力联动:TKH的大模型应用支持AIPC版、企业版、云端版等不同版本,企业版本进行本地化私有部署,保证企业内部数据安全性,可形成员工个人与企业数据中心的云边算力联动,简单问题可以由本地模型
无涯·问知是一款基于星环科技自研预训练模型无涯Infinity和向量数据库Hippo、图数据库StellarDB构建的企业级垂直领域问答知识库应用。无涯·问知支持不限长度的音视频图文等模态数据快速的行情数据、卫星遥感数据、产业链上下游数据等,为从业者提供专业、及时的辅助决策。构建自有知识库,确保企业和个人数据安全自动化知识工程:支持用户上传各类文档后自动解析,通过文档切片及向量化技术自动为大模型注入私域知识,确保企业数据安全。灵活扩展知识库:自有知识库的构建使得企业能够根据业务发展的需要进行灵活扩展,保证了知识体系的连续性和及时更新,以应对快速变化的市场环境。入库,且支持自动化文档切片及向量化处理,配合自研的RAG框架,可实现知识的精准召回。无涯·问知具备了泛行业的知识获取能力、专业的内容理解能力及数据分析能力,可用于市场研究分析、企业供应链分析、法律风险预警、设备故障诊断等丰富的业务场景中。主要产品优势体现在:精准问答能力,减少大模型幻觉基于向量索引技术的信息检索:基于星环自研向量数据库Hippo的向量索引技术,能够在庞大的数据集中快速精准地召回相关
,能够提供更丰富和深入的知识表示。知识图谱通常以图数据库的形式存储,并通过图数据库查询语言进行访问和查询。知识库知识图谱的一种实现方式,知识图谱则更加注重于知识之间的结构和关联。知识图谱可以通过知识库知识库知识图谱是两个相关但不同的概念。知识库(KnowledgeBase)是指存储和组织知识的集合。它可以包含结构化和非结构化的信息,如事实、规则、定义、术语等。知识库通常用于存储特定领域的知识中的信息构建而成,但不同的知识库可能对应不同的知识图谱结构。知识库通常用于存储和管理知识的具体内容,而知识图谱则更注重于知识的结构和组织方式。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、模态知识存储与融合、形式知识计算和推理以及维度的落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner
行业资讯
知识库建设
知识库,是什么?定义剖析从专业角度来讲,知识库是用于知识管理的特殊数据库,它将知识以特定的知识表示方法进行表达、组织和存储,以便于有关领域知识的采集、整理以及提取。早期,知识库主要应用于专家系统,是专家系统中存放应用领域问题求解知识的集合,包含基本事实、规则和其它相关信息,这些知识来源于领域专家或者从业者的经验教训。比如在医疗诊断专家系统中,知识库就存储着各种疾病的症状、诊断标准、治疗方法等知识,系统依据这些知识来对患者的病情进行诊断和给出治疗建议。随着技术发展和应用场景的拓展,如今的知识库已经演变成一个更为广义的概念,成为一种具有咨询性质的共享知识库,是组织或企业知识资产集合地。它不内部知识库和外部知识库这两种常见类型,它们在功能和服务对象上有着明显的差异。内部知识库主要服务于企业或组织内部的员工,是员工之间协作和共享公司知识与信息的重要平台。这里面存放着公司内部的各种规章制度再局限于专家系统的规则集合,而是涵盖了各种结构化和非结构化的知识,像操作指南、案例分析、常见问题解答等,旨在为用户提供全面的知识服务,支持决策、解决问题和促进学习。类型大观在实际应用中,知识库主要分为
什么是模态知识图谱?模态知识图谱是一种基于多种数据源和模态信息进行建模的知识图谱,除了传统的文本、结构化数据和关系数据外,还包括图像、视频、音频等多种形式的非结构化数据。在模态知识图谱中,每个实体和关系都可能包含不同的数据模态,这些数据之间通过共同的特征和属性进行关联和建模,可以更全面、更准确地描述复杂的现实世界。模态知识图谱的建模过程需要包括多个方面,如数据融合、特征提取、实体识别和关联。模态知识图谱在社交推荐、自动驾驶和智能问答等领域具有广泛的应用前景,可以提供更全面、更丰富的知识推荐和查询服务。星环科技知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、模态知识存储与融合、形式知识计算和推理以及维度的图谱分析。除了具备链关系建模。具体包括:数据融合:将来自不同模态数据源进行融合,采用合适的方法处理不同数据模态之间的异质性和不兼容性。特征提取:针对非结构化数据如图像、视频和音频等,需要进行特征提取和降维处理,抽取其中的
企业知识库对接大模型是指将企业内部积累的大量知识数据与大型语言模型或其他类型的大模型进行集成和交互,以实现更智能、高效的知识管理和应用,以下从对接的目的、方式和价值等方面为你详细介绍:对接目的提升知识检索与获取效率:企业知识库中的数据可能非常庞大和复杂,员工在查找信息时可能面临困难。对接大模型后,利用大模型强大的自然语言处理能力和检索功能,员工可以通过自然语言提问的方式快速获取准确的知识,无需在:将企业知识库中的数据以合适的格式导入到大模型中,让大模型能够学习和理解这些数据。例如,将文档、表格、报告等数据进行预处理后,输入到语言模型中进行训练,使模型能够掌握企业特定领域的知识和术语。API接口大量文档和数据中手动查找。增强知识理解与分析能力:大模型能够对知识库中的知识进行深度理解和分析,不仅可以提供表面的信息,还能挖掘知识之间的关联和潜在含义,帮助员工更好地理解业务知识,为决策提供更有价值的支持。促进知识创新与共享:通过大模型的交互功能,员工可以与模型进行对话,激发新的想法和思路,促进知识的创新。同时,也方便员工将自己的知识和经验分享到知识库中,实现知识的共享和传承。对接方式数据集成
产品文档
6.1 图计算
StellarDB5.0.1版本对图算法场景进行了大规模改进和提升,内置算法性能得到较大提升。在语法方面,StellarDB5.0.1的内置图算法对于返回的节点,会直接以节点类型返回。因此可以直接使用uid(vertex)访问节点的uid,而不再需要node_rk_to_uid函数进行uid的转换。可以参考PageRank等函数。另外,对于图算法返回的节点,我们也可以灵活的访问其其他属性作为返回值。图计算简介StellarDB的图计算使用TEoC语句调用相应图算法。算法的输入数据为图的点、边数据。当前版本中图计算支持结果返回、结果导出和结果写回。在使用图算法时,使用configcrux.execution.modeanalysis;语句切换到分析模式下使用图算法语句。图数据视图StellarDB支持创建一个可被持久化的视图,用于加速图算法执行过程。创建视图创建视图的语法如下所示:createquerytemporarygraphviewGRAPH_VIEW_NAMEas(v)[e]withGRAPH_ALGO(@GRAPH_VIEW_NAME,VIEW_STORE_PATH,CONFI...
产品文档
5.12 变量声明
声明简介声明是指为特定数据类型的变量分配一定的存储空间,并命名该变量以便引用它;必须先声明变量,然后才能引用它;对声明的变量可以进行赋值操作来改变它的值;声明的变量其作用域是Session级别的。变量声明使用decl关键字声明一个变量必须为变量指定名称和类型,且名称不能与已有的变量名相同。声明但未赋值的变量的默认值为null。变量名声明对大小写敏感。变量声明的语句遵循如下格式:DECL[<variable_name>:<variable_type>];使用方法示例如下表所示:语句说明declx:int;声明一个类型为int的变量xdecls:string;声明一个类型为string的变量sdecll:long;声明一个类型为long的变量ldeclb:boolean;声明一个类型为boolean的变量bdecld:double;声明一个类型为double的变量ddecltime:localdatetime;声明一个类型为localdatetime的变量timedecld1:decimal;声明一个类型为decimal的变量d1decllist1:list[int...
产品文档
7.1 自定义函数
StellarDB支持用户添加自定义函数,添加后可在cypher语句中使用。自定义函数实现自定义函数通过java/scala语言开发,可继承实现两种基类,编译成jar包,通过指定命令加载到StellarDB。需要实现的基类为如下两种,可自行选择继承合适的基类:继承UDF基类继承GenericUDF基类。继承UDF基类该类实现简单,功能较为单一。支持Quark的基本类型、数组和Map。适合实现简单的逻辑。继承org.apache.hadoop.hive.ql.exec.UDF类继承UDF类必须实现evaluate方法且返回值类型不能为void,支持定义多个evaluate方法不同参数列表用于处理不同类型数据。@Description(name="my_plus",value="my_plus()-ifstring,doconcat;ifinteger,doplus",extended="Example:\n>selectmy_plus('a','b');\n>ab\n>selectmy_plus(3,5);\n>8")/***实现UDF函数,若字符串执行拼接,in...
本章节的示例语句均可在示例图my_graph中执行,执行前请先创建示例图my_graph,建图语句如下:creategraphmy_graphwithschema(:Boy{namestring,salarydouble,ageint,singleboolean,birthdaylocaldatetime,reservelong,ratedecimal(38,10),hobbysarray<string>,geoPointgeo<double>})(:Girl{namestring,salarydouble,ageint,singleboolean,birthdaylocaldatetime,reservelong,ratedecimal(38,10),hobbysarray<string>,geoPointgeo<double>})[:Friend{sinceint}][:Likes{sinceint}]graphproperties:{`graph.shard.number`:3,`graph.replication.number`:...
索引是数据库中某些数据的冗余副本,目的是使查询性能更优。作为代价,数据库需要额外存储空间和较慢写入速度,因此决定哪些字段需要索引是一项重要且不易的任务。(新)StellarDB5.0.1版本不再对旧版本使用的manipulatecreate_index和manipulatedelete_index语法进行支持,在新版本中统一使用createindex和dropindex进行索引的创建和删除新增索引CREATEINDEX[IFNOTEXISTS]FOR(LabelName)ON[f1,f2,...];CREATEINDEX[IFNOTEXISTS]FOR[LabelName]ON[f1,f2,...];不支持对TIME_SERIES类型的属性创建索引默认情况下,对同一个Label的某个属性多次创建索引会报错;但如果带有IFNOTEXISTS,则不会抛出任何错误包裹点边LabelName的括号不同,注意区分示例1.在点labelperson的属性name和age上建立索引CREATEINDEXIFNOTEXISTSFOR(person)ON[name,age];示例2.在边labelask...
为什么引入动态图模型?在实际应用过程中很容易可以发现,图数据在很多图数据的应用场景中并不是静态不变的,而是动态演进的,这些场景中包括例如金融反欺诈场景中金融交易网络随着时间的推进而发生的交易变化、交易社群变化等;又比如社交网络中新增用户、用户关注或者取消关注、更改账户信息等。将图数据变化的历史记录下来,不仅可以用于历史数据规律的总结,还可以利用动态图数据进行动态图神经网络相关技术的研究,从而进一步挖掘数据中潜在的数据价值和更加灵活高效的业务场景,譬如预测某一个时刻某一事件是否会发生。动态图模型的动态变化图数据的动态变化主要分为两类,一类是节点或边的属性的值的变化;另一类变化是子图(结构)的变化,如新增/删除点边。这两种图数据的动态变化可以单独发生,也可以同时发生。从图数据的属性变化角度来看,StellarDB5.0.1动态图模型可以记录图中节点或者边属性的所有历史版本(而非新数据覆盖旧数据)。在实际数据开发使用中,还可以结合诸如柱状图、趋势图等对历史数据进行可视化,更加直观、更加适合业务使用。从图数据的子图(结构)的角度来看,StellarDB5.0.1动态图模型还可以返回不同时间子图...
通过beeline或JDBC时,设置参数configquery.langcypher;将查询语言切换为TEoC模式。根据使用场景选择查询模式(默认为immediate模式)immediate模式通常用于并发及短查询场景,查询结果和中间结果通常不超过百万。通过configcrux.execution.modeimmediate;切换。analysis模式通常用于分析场景,创建图、插入数据以及图算法相关的语句必须在该模式下进行。通过configcrux.execution.modeanalysis;切换。
产品文档
3 安装 StellarDB
3.1在TDH平台安装StellarDB3.2StellarDB安装校验3.3StellarDB低版本升级至StellarDB5.0.1
产品文档
5.10 表达式
类型表达式类型例子十进制型整数10,-213十进制小数1.25,3.604E-14,-2.31十进制型长整数199345843592l,-12381543923L任意精度的有符号十进制数123bd,123.31BD八进制整数(0开头)084,-096字符串"星环",'信息科技'布尔类型true,false,TRUE,FALSE数组类型[1,2,3],["星环","信息科技"],[decimal(10.2,3,1),decimal(100.2,3,2)],[localdatetime("2021-01-18T09:50:12.627"),localdatetime("2021-11-18T03:50:12.113")]时间类型localdatetime("2021-01-18T09:50:12.627")Decimal类型decimal(10.2,3,1)地理空间类型point(20.5,30.5),point(-20.5,-30.5)时序类型{localdatetime("2023-01-01T15:16:17")::"nice"},{localdatetime("1997-01-01...
产品文档
4 快速入门
快速上手本章节将引导您快速熟悉StellarDB,并为您初步介绍如何通过KGExplorer和beeline客户端操作StellarDB。其中,"StellarDB初探"一节通过构建一张人物关系图,从零介绍如何在StellarDB进行基本操作;"StellarDB进阶"一节为您提供了内置于StellarDB的《哈利·波特》人物关系图,帮助您进一步探索StellarDB。StellarDB初探使用KGExplorer构建图从Manager页面进入KGExplorer页面。若KGExplorer开启了单点登录,会自动跳转Federation登录页面,按如图方式登录:KGExplorer用戶开启方法以及详细使用说明请查看章节《KGExplorer使用文档》。点击登录后进入KGExplorer主页面。我们首先需要构建图名为"hello_world"的图。在主页面右上角点击创建图按钮开始图谱schema的构建。按照引导填写图基本信息后点击确定进入构建页面。在画布中,我们为"hello_world"图创建Boy和Girl两种类型的点,两种类型的点均包含name、salary、age、single四...