国内主要的大语言模型

国内人工智能模型发展是近年来中国科技领域一个重要趋势。这些模型在自然语言处理、计算机视觉、语音识别等多个领域展现出强大能力,能够处理复杂任务并提供高质量智能服务。国内人工智能模型通常具有以下特点:规模数据训练:利用海量数据进行深度学习训练,以捕捉复杂模式和特征。跨领域泛化能力:能够在不同场景下灵活应用,适应多种需求。高性能计算支持:依赖于高性能计算资源和优化算法,确保高效运行。行业定制化:针对特定行业需求进行优化,如金融模型专注于市场分析和风险管理。

国内主要的大语言模型 更多内容

国内各大互联网公司纷纷投入AI模型研发,涉及多种类型模型。以下是星环科技模型相关产品:星环无涯金融模型-TranswarpInfinity星环无涯金融智能投研模型TranswarpInfinity是一款面向金融量化领域、超大规模参数量生成式语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大理解和生成能力,支持股票、债券、基金、商品等市场事件全面复盘、总结及具备高精准、强逻辑事理分析与推断力,并能够对股票、债券、基金、商品等各类市场事件进行全面的复盘和推演。四是专门设计针对金融行业语言模型架构,具备准确理解和合理分析金融领域专业能力。五是背靠数据领域模型。它可以衍生出许多子领域子任务微调模型。“求索”模型具备数据行业需求理解、推理、各类(含多模型)结构化查询语言和代码生成、文本生成、嵌入向量生成、知识推理等能力;用户只需使用自然语言,就能利用“求索”模型获取所需数据分析、展示和报告。星环语言模型运营平台-SophonLLMOps为了满足企业应用语言模型需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出
行业资讯
模型语言
。开源语言模型国内外有许多组织开源了他们语言模型,这些模型能够处理各种自然语言处理任务,如生成、分类、摘要、翻译、语音识别等。应用前景:语言模型应用前景广阔,它们正在改变计算机理解和生成模型语言通常指的是用于构建规模预训练模型编程语言和框架。语言模型(LLMs):语言模型是在规模文本语料上训练预训练语言模型,它们能够理解和生成人类语言。这些模型通常具有大量参数,并使用巨量文本数据进行训练。实时语音交互:某些模型i能够实现与大型语言模型实时语音交互,无需语音转录,直接从语音指令中生成文本和语音响应,显著提升了用户体验。多模态能力:一些模型是多模态版本,能够在现实场景中控制机器人完成简单任务,它们能够处理文本、音频、图像等多种形式数据。涌现能力:语言模型展现出“涌现能力”,如上下文学习、指令遵循、逐步推理等,是其规模达到一定水平后显现特殊能力人类语言方式,并在多个领域展现出强大潜力。交互体验:模型通过模仿人类交流机制,特别是在非正式语言交互方面,提供了良好交互体验,这对于AI商业应用很重要
行业资讯
语言模型
语言模型(LargeLanguageModel,简称LLM)是然语言处理领域一种重要技术,语言模型可以为人工智能提供更为精准和自然语言处理能力。LLM核心思想是利用机器学习算法学习规模语料库中语言模型,并通过对学到模型进行概率推断来构建对应文本生成模型语言模型有助于提高机器语言理解和生成能力。通常来说,人类语言表达和理解非常灵活和多样化。我们可以使用不同语言风格、词汇语料库,可以在高效情况下生成基于人类语言文本,从而提高机器语言达和理解能力。语言模型可以用于各种语言处理任务。由于LLM可以生成自然而然文本,因此它可以用于各种语言处理任务,如问答系统、文本摘要、机器翻译、语音合成等,在这些任务中,LLM可以将大量语言特征、语法规则、词汇义项等信息嵌到它内部模型中,然后通过模型概率推断方式,生成相应文本结果。语言模型是构建人工智能重要组成部分到来,给软件开发行业带来了巨大变革,企业需要一个工具链来开发模型。星环科技作为国内领先数据基础软件开发商,积极应对以ChatGPT为代表人工智能带来新挑战,打造数据管理平台多模态、智能化
所谓语言模型是一种机器学习算法,可以根据给定文本来预测下一个词语或字符出现概率。通过大量文本数据学习语言统计特征,然后生成具有相似统计特征新文本。其主要目标是建立一个统计模型,用于估计文本(NaturalLanguageProcessing,NLP)一种方法,利用规模语料数据进行预训练来构建预训练语言模型(Pre-trainedLanguageModels,PLMs)。简单来说,语言模型是一种深度学习模型,通过在规模数据集上进行训练,以实现对人类语言理解。它主要目标是准确地学习和理解人类语言,使得机器能够像人类一样解释和理解语言。这种模型出现彻底改变了计算机理解和生成人类语言方式。与普通语言模型相比,大型语言序列中每个词语或字符出现概率,从而实现自然语言处理任务,如语言生成和语言理解。大型语言模型(LargeLanguageModel,LLM)是自然语言处理模型在规模上有显著不同。这种类型模型通常具备大量参数,并利用巨大文本语料库进行训练。大型语言模型是一种强大工具,通过减少人工干预,可以快速、准确地处理自然语言数据。这些模型可用于许多任务,如文本
行业资讯
LLM 语言模型
自然语言任务,并且生成文本质量较高。此外,由于语言模型经过了大量文本数据训练,因此其具有很好泛化性能,可以适应多种场景和应用。LLM语言模型应用场景主要集中在自然语言处理、机器翻译、智能语言模型(LLM)是指使用大量文本数据训练深度学习模型,可以生成自然语言文本或理解语言文本含义。语言模型可以处理多种自然语言任务,如文本分类、问答、对话等。语言模型通常使用规模语料库进行训练,这些语料库包含了大量文本数据,涵盖了各种领域和语言风格。通过训练,语言模型可以学习到文本数据内在特征和规律,从而在各种自然语言处理任务中表现出色。语言模型优势在于其能够处理复杂写作、智能客服、智能语音助手、自然语言推理等领域。自然语言处理:LLM可以用于文本生成、情感分析、语言翻译等领域,帮助人们快速生成高质量文章、简历、报告等。机器翻译:特别是在处理长文本和专业术语时效果更为显著。智能写作助手:可以利用LLM文本生成能力,帮助人们快速生成高质量文章、简历、报告等。智能客服机器人:能够帮助用户解决问题和提供相关服务。这类应用可以在电子商务、在线教育、医疗健康等领域得到
亿参数,帮助它们学习语言数据中复杂模式。模型是一个更广泛概念,包括了语言模型在内多种类型模型,而语言模型则是专门针对自然语言处理任务模型模型可以应用于多种不同领域,而语言模型主要应用于自然语言相关任务。模型语言模型是人工智能领域中两个重要概念,各自有不同特点和应用场景。模型:通常指的是具有规模参数和复杂计算结构机器学习模型,这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。模型设计目的是为了提高模型表达能力和预测性能,能够处理更加复杂任务和数据。模型在各种领域都有广泛应用,包括自然语言处理、计算机视觉、语音识别和推荐系统等。模型通过训练海量数据来学习复杂模式和特征,具有更强大泛化能力,可以对未见过数据做出准确预测。语言模型:(LargeLanguageModels,简称LLMs)是模型一个子集,专注于处理自然语言,能够理解、生成和处理规模文本数据。语言模型在机器翻译、文本生成、对话系统等任务上取得显著成果。这些模型通过在大型文本语料库上进行训练,学会理解语言结构、语义、语境和语用等方面。语言模型特点是规模庞大,包含数十
行业资讯
语言模型
语言模型是一种特殊类型模型主要专注于自然语言处理任务,能够对自然语言文本进行生成、理解、翻译等多种操作,通过学习大量文本数据来掌握语言语法、语义和语用等方面的知识,并能够根据输入文本生成连贯、有意义输出。模型特点语言理解能力强:能够理解自然语言文本含义、上下文关系和语义逻辑,从而准确地回答各种问题、进行文本摘要、阅读理解等任务。文本生成能力强:可以根据给定主题、语境或提示能力强:能够在未见过文本数据和任务上表现出较好性能,通过少量示例或指令就能快速适应新任务和领域。模型应用场景内容创作:帮助作家、编辑等创作各种类型文本内容,如撰写新闻报道、小说、文案等,提高生成各种类型文本,如文章、故事、对话、代码等,生成文本在语法和语义上具有较高质量和连贯性。多语言支持:经过多语言语料训练后,能够处理多种语言文本,实现跨语言文本生成、翻译和理解等功能。泛化创作效率和质量。智能客服:理解用户咨询问题,并快速准确地生成回答,提供7*24小时在线服务,提高客户服务效率和质量。机器翻译:实现不同语言之间自动翻译,为跨语言交流和信息传播提供便利。智能助手
模型时代到来,给软件开发行业带来了巨大变革,企业需要一个工具链来开发模型。星环科技作为国内领先数据基础软件开发商,打造数据管理平台多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己,推动数字经济可持续发展。无涯是一款面向金融量化领域、超大规模参数量生成式语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大理解和生成能力,支持股票、债券、基金、商品等市场事件降本增效与科技创新。求索具备数据行业需求理解、推理、各类(含多模型)结构化查询语言和OpenCypher代码生成、文本生成、嵌入向量生成、知识推理等能力。借助这一领域模型,企业业务人员、数据分析人员以及业务管理者只需使用自然语言,就能利用TranswarpSoLar模型获取所需数据分析、展示和报告,轻松地应对各种复杂数据分析挑战,并快速获得有价值数据洞察,为企业业务增长提供原动力。模型,星环科技推出了机器学习模型全生命周期管理工具平台SophonLLMOps,支持从数据接入开发、提示工程、模型微调、上架部署到应用编排和业务效果对齐全链路流程,结合自研向量数据库
大型语言模型(LLM)是一种基于深度学习技术语言处理模型,其目的是理解和生成自然语言文本。LLM主要应用于自然语言处理、语音识别、机器翻译等领域。大型语言模型LLM核心是神经网络,其基本结构是自己行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用语言模型”训练/微调,得到“满足自身业务特点领域语言模型”;第二,帮助客户将原型语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用语言模型模型持续提升。除此之外,星环科技在行业首先推出了两行业大模型:服务于金融行业星环金融模型无涯,以及数据分析模型SoLar“求索”。。大型语言模型LLM训练需要大量文本数据。通过对大量文本数据进行预处理,将其转化为模型可以处理格式。然后,使用反向传播算法和梯度下降等优化方法对模型进行训练,使其能够根据输入文本生成合理输出。在训练过程中,需要不断地调整模型参数,以提高其性能。大型语言模型LLM应用非常广泛,例如在自然语言处理领域中,LLM可以用于文本分类、情感分析、命名实体识别等任务。在机器翻译领域中,LLM可以用
为什么引入动态图模型?在实际应用过程中很容易可以发现,图数据在很多图数据的应用场景中并不是静态不变的,而是动态演进的,这些场景中包括例如金融反欺诈场景中金融交易网络随着时间的推进而发生的交易变化、交易社群变化等;又比如社交网络中新增用户、用户关注或者取消关注、更改账户信息等。将图数据变化的历史记录下来,不仅可以用于历史数据规律的总结,还可以利用动态图数据进行动态图神经网络相关技术的研究,从而进一步挖掘数据中潜在的数据价值和更加灵活高效的业务场景,譬如预测某一个时刻某一事件是否会发生。动态图模型的动态变化图数据的动态变化主要分为两类,一类是节点或边的属性的值的变化;另一类变化是子图(结构)的变化,如新增/删除点边。这两种图数据的动态变化可以单独发生,也可以同时发生。从图数据的属性变化角度来看,StellarDB5.0.1动态图模型可以记录图中节点或者边属性的所有历史版本(而非新数据覆盖旧数据)。在实际数据开发使用中,还可以结合诸如柱状图、趋势图等对历史数据进行可视化,更加直观、更加适合业务使用。从图数据的子图(结构)的角度来看,StellarDB5.0.1动态图模型还可以返回不同时间子图...
索引是数据库中某些数据的冗余副本,目的是使查询性能更优。作为代价,数据库需要额外存储空间和较慢写入速度,因此决定哪些字段需要索引是一项重要且不易的任务。(新)StellarDB5.0.1版本不再对旧版本使用的manipulatecreate_index和manipulatedelete_index语法进行支持,在新版本中统一使用createindex和dropindex进行索引的创建和删除新增索引CREATEINDEX[IFNOTEXISTS]FOR(LabelName)ON[f1,f2,...];CREATEINDEX[IFNOTEXISTS]FOR[LabelName]ON[f1,f2,...];不支持对TIME_SERIES类型的属性创建索引默认情况下,对同一个Label的某个属性多次创建索引会报错;但如果带有IFNOTEXISTS,则不会抛出任何错误包裹点边LabelName的括号不同,注意区分示例1.在点labelperson的属性name和age上建立索引CREATEINDEXIFNOTEXISTSFOR(person)ON[name,age];示例2.在边labelask...
通过beeline或JDBC时,设置参数configquery.langcypher;将查询语言切换为TEoC模式。根据使用场景选择查询模式(默认为immediate模式)immediate模式通常用于并发及短查询场景,查询结果和中间结果通常不超过百万。通过configcrux.execution.modeimmediate;切换。analysis模式通常用于分析场景,创建图、插入数据以及图算法相关的语句必须在该模式下进行。通过configcrux.execution.modeanalysis;切换。
产品文档
4 快速入门
快速上手本章节将引导您快速熟悉StellarDB,并为您初步介绍如何通过KGExplorer和beeline客户端操作StellarDB。其中,"StellarDB初探"一节通过构建一张人物关系图,从零介绍如何在StellarDB进行基本操作;"StellarDB进阶"一节为您提供了内置于StellarDB的《哈利·波特》人物关系图,帮助您进一步探索StellarDB。StellarDB初探使用KGExplorer构建图从Manager页面进入KGExplorer页面。若KGExplorer开启了单点登录,会自动跳转Federation登录页面,按如图方式登录:KGExplorer用戶开启方法以及详细使用说明请查看章节《KGExplorer使用文档》。点击登录后进入KGExplorer主页面。我们首先需要构建图名为"hello_world"的图。在主页面右上角点击创建图按钮开始图谱schema的构建。按照引导填写图基本信息后点击确定进入构建页面。在画布中,我们为"hello_world"图创建Boy和Girl两种类型的点,两种类型的点均包含name、salary、age、single四...
产品文档
6.1 图计算
StellarDB5.0.1版本对图算法场景进行了大规模改进和提升,内置算法性能得到较大提升。在语法方面,StellarDB5.0.1的内置图算法对于返回的节点,会直接以节点类型返回。因此可以直接使用uid(vertex)访问节点的uid,而不再需要node_rk_to_uid函数进行uid的转换。可以参考PageRank等函数。另外,对于图算法返回的节点,我们也可以灵活的访问其其他属性作为返回值。图计算简介StellarDB的图计算使用TEoC语句调用相应图算法。算法的输入数据为图的点、边数据。当前版本中图计算支持结果返回、结果导出和结果写回。在使用图算法时,使用configcrux.execution.modeanalysis;语句切换到分析模式下使用图算法语句。图数据视图StellarDB支持创建一个可被持久化的视图,用于加速图算法执行过程。创建视图创建视图的语法如下所示:createquerytemporarygraphviewGRAPH_VIEW_NAMEas(v)[e]withGRAPH_ALGO(@GRAPH_VIEW_NAME,VIEW_STORE_PATH,CONFI...
产品文档
5.10 表达式
类型表达式类型例子十进制型整数10,-213十进制小数1.25,3.604E-14,-2.31十进制型长整数199345843592l,-12381543923L任意精度的有符号十进制数123bd,123.31BD八进制整数(0开头)084,-096字符串"星环",'信息科技'布尔类型true,false,TRUE,FALSE数组类型[1,2,3],["星环","信息科技"],[decimal(10.2,3,1),decimal(100.2,3,2)],[localdatetime("2021-01-18T09:50:12.627"),localdatetime("2021-11-18T03:50:12.113")]时间类型localdatetime("2021-01-18T09:50:12.627")Decimal类型decimal(10.2,3,1)地理空间类型point(20.5,30.5),point(-20.5,-30.5)时序类型{localdatetime("2023-01-01T15:16:17")::"nice"},{localdatetime("1997-01-01...
产品文档
5.12 变量声明
声明简介声明是指为特定数据类型的变量分配一定的存储空间,并命名该变量以便引用它;必须先声明变量,然后才能引用它;对声明的变量可以进行赋值操作来改变它的值;声明的变量其作用域是Session级别的。变量声明使用decl关键字声明一个变量必须为变量指定名称和类型,且名称不能与已有的变量名相同。声明但未赋值的变量的默认值为null。变量名声明对大小写敏感。变量声明的语句遵循如下格式:DECL[<variable_name>:<variable_type>];使用方法示例如下表所示:语句说明declx:int;声明一个类型为int的变量xdecls:string;声明一个类型为string的变量sdecll:long;声明一个类型为long的变量ldeclb:boolean;声明一个类型为boolean的变量bdecld:double;声明一个类型为double的变量ddecltime:localdatetime;声明一个类型为localdatetime的变量timedecld1:decimal;声明一个类型为decimal的变量d1decllist1:list[int...
产品文档
7.1 自定义函数
StellarDB支持用户添加自定义函数,添加后可在cypher语句中使用。自定义函数实现自定义函数通过java/scala语言开发,可继承实现两种基类,编译成jar包,通过指定命令加载到StellarDB。需要实现的基类为如下两种,可自行选择继承合适的基类:继承UDF基类继承GenericUDF基类。继承UDF基类该类实现简单,功能较为单一。支持Quark的基本类型、数组和Map。适合实现简单的逻辑。继承org.apache.hadoop.hive.ql.exec.UDF类继承UDF类必须实现evaluate方法且返回值类型不能为void,支持定义多个evaluate方法不同参数列表用于处理不同类型数据。@Description(name="my_plus",value="my_plus()-ifstring,doconcat;ifinteger,doplus",extended="Example:\n>selectmy_plus('a','b');\n>ab\n>selectmy_plus(3,5);\n>8")/***实现UDF函数,若字符串执行拼接,in...
本章节的示例语句均可在示例图my_graph中执行,执行前请先创建示例图my_graph,建图语句如下:creategraphmy_graphwithschema(:Boy{namestring,salarydouble,ageint,singleboolean,birthdaylocaldatetime,reservelong,ratedecimal(38,10),hobbysarray<string>,geoPointgeo<double>})(:Girl{namestring,salarydouble,ageint,singleboolean,birthdaylocaldatetime,reservelong,ratedecimal(38,10),hobbysarray<string>,geoPointgeo<double>})[:Friend{sinceint}][:Likes{sinceint}]graphproperties:{`graph.shard.number`:3,`graph.replication.number`:...
产品文档
3 安装 StellarDB
3.1在TDH平台安装StellarDB3.2StellarDB安装校验3.3StellarDB低版本升级至StellarDB5.0.1