微调大语言模型怎么做
星环大模型运营平台(Sophon LLMOps)是星环科技推出的企业级大模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将大模型落地到生产和业务中去。Sophon LLMOps打通并优化了语料接入和开发、提示工程、大模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。
微调大语言模型怎么做 更多内容

行业资讯
大语言模型运营平台
星环大语言模型运营平台-SophonLLMOpsSophonLLMOps作为一个全面的大模型统一运营管理平台,旨在为用户打通从数据接入和开发、提示工程、大模型微调、大模型上架部署到大模型应用编排和开发、推理数据开发、数据维护等工作,对大语言模型涉及的原始数据、样本数据、提示词数据做清洗、探索、增强、评估和管理等。第二,SophonLLMOps具有模型运维管理能力。除了传统MLOps的六大统一——统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释外,针对大语言模型的微调、持续提升、评估、对齐等提供从计算框架、工具到计算、存储、通信的调度和优化支持。第三,SophonLLMOps具有大”的训练、微调,得到满足自身业务特点的领域大语言模型。其次,帮助客户将原型的大语言模型应用,成功地投入到实际生产中。第三,帮助客户运营在生产中应用的大语言模型,完成大模型的持续提升等。语言模型和其他任务的编排、调度和上线能力。SophonLLMOps提供Agent、Ops、DAG,结合星环科技的多款大数据、数据库产品,如向量库Hippo和分布式图数据库StellarDB等,将不同大

行业资讯
大模型高效微调
单个预训练模型适应多种任务,无需为每个任务训练多个模型,提高了模型的通用性和可扩展性。应用案例自然语言处理:如情感分析、文本分类、机器翻译等任务,通过高效微调可使大模型在特定领域的文本数据上表现更优,为大模型高效微调是通过参数高效微调技术,如加性微调、选择性微调、重参数化微调及混合微调等方法,在减少计算成本和训练时间的同时,提升模型在下游任务中的性能表现,使其能更好地适应各种特定应用场景。高效微调用户提供更准确的情感倾向判断、文本类别划分和语言翻译服务。图像分类:将高效微调技术应用于图像领域,可帮助模型更好地识别和分类不同的图像类别,在医学图像分析、自动驾驶等场景中发挥重要作用。智能客服与聊天机器人:针对特定行业或领域的知识和问题,对大模型进行微调,使其能够更准确地理解用户咨询并提供专业的解答和建议,提高智能客服和聊天机器人的服务质量和效率。的优势节省计算资源:传统全参数微调计算成本高,而高效微调只调整小部分参数,降低了对计算资源的需求。缩短训练时间:减少了需训练的参数数量,从而加快模型训练速度,让研究人员和开发者能更快速地进行实验和迭代

行业资讯
大模型微调
大模型微调(Fine-tuning)是指在已经预训练好的大型语言模型基础上,使用特定的数据集进行进一步的训练,以使模型适应特定任务或领域的过程。微调的核心目的是赋予大模型更加定制化的功能,使其能够在由(指令,输出)对组成的数据集上进一步训练大语言模型的过程,有助于弥合模型的下一个词预测目标与遵循人类指令目标之间的差距,可视为有监督微调的一种特殊形式。更好地适应特定领域的需求和特征。下是大模型微调的一般步骤和方法:准备工作选择合适的预训练模型:需综合考虑模型的大小、架构以及与目标任务的适配性。准备训练数据集:对数据进行收集、标注、预处理等操作,确保数据的质量和多样性。数据应与目标任务相关,并进行清洗以去除噪声和重复数据。微调过程数据集分割与标记:通常将数据集划分为训练集、验证集和测试集。训练集用于训练模型,验证集用于调整模型参数,测试集用于评估最终模型性能。设定微调目标与参数调整:明确微调的目标和预期结果,确定要调整的参数,如学习率、优化器、正则化参数等。执行微调:在训练循环中进行前向传播、计算损失、反向传播和参数更新等步骤。可运用早停和学习

行业资讯
大模型微调
标签的文本数据。数据预处理:对数据进行清洗、分词、编码等预处理操作。选择基础模型预训练模型选择:选择一个预训练好的大语言模型。设定微调参数超参数设置:设定学习率、训练轮次(epochs)、批处理大小大模型微调是一个复杂的过程,涉及多个步骤和技术。以下是大模型微调的主要方法和步骤:数据准备选择数据集:根据目标任务选择相关性高的数据集,例如,如果目标是提高文本分类的准确性,那么应选择包含大量分类(batchsize)等超参数。其他超参数:根据需要设定权重衰减、梯度剪切等。微调流程加载模型和权重:加载预训练的模型和权重。模型修改:根据任务需求对模型进行必要的修改,如更改输出层。损失函数和优化器:选择合适的损失函数和优化器。微调训练:使用选定的数据集进行微调训练,包括前向传播、损失计算、反向传播和权重更新。微调方法全量微调:利用特定任务数据调整预训练模型的所有参数,以充分适应新任务。参数高效微调:仅更新模型中的部分参数,显著降低训练时间和成本.微调后的评估和部署模型评估:在训练过程中,使用验证集对模型进行定期评估,并根据评估结果调整超参数或微调策略。测试模型性能:在微调完成后,使用测试集对

行业资讯
大模型预训练+微调
在于能够节省大量人力和时间成本。相较于传统的深度学习方法需要大量的标注数据和训练时间,使用大模型预训练+微调方法可以大大提高模型的训练效率和准确性,并使得模型能够在更广泛的应领域中发挥作用。在自然语言处理领域中,大模型预训练+微调已经被用于很多任务,例如语言模型、机器翻译、问答系统和文本分类等。星环大语言模型运营平台-SophonLLMOps为了帮助企业用户基于大模型构建未来应用,星环科技推出了大大模型预训练+微调是一种先利用大量无监督数据进行预训练,然后再根据有标注的数据进行微调的机器学习方法。目的是提高模型在训练数据上的表现,从而在复杂任务中获得更好的性能。预训练是指在大量无标注数据上对模型进行训练。这种方法利用了大规模数据的特点,学习了模型中诸如词汇表达、句法结构和上下文信息等普遍规律。同时,预训练还可以为后续的微调任务提供有用的初始化参数,使得模型的表现更加出色。预训练通常有两种数据来调整模型的参数。该方法通常采用反向传播算法,使得模型能够根据有标注数据的训练样本进行反向优化微调的目的是让模型更好地适应目标任务,例如文本分类、情感分析和语音识别等。大模型预训练+微调的主要优点

行业资讯
大模型如何微调?
模型参数更新,包括只更新一部分参数或通过对参数进行结构化约束,如稀疏化或低秩近似来降低微调的参数数量。提示微调、指令微调、有监督微调:指令微调是通过在由(指令,输出)对组成的数据集上进一步训练大语言大模型的微调是一个关键步骤,用于将预训练模型适应于特定任务或领域。这一过程通常涉及以下步骤:准备阶段选择合适的预训练模型:需综合考量模型的架构、参数量以及与目标任务的适配性等因素。准备训练数据集加速训练过程。微调实施阶段数据集划分:通常将数据集按照一定比例划分为训练集、验证集和测试集。训练集用于模型的训练,验证集用于在训练过程中调整模型的参数和评估模型的性能,测试集则用于最终评估模型的泛化能力。设定微调目标与参数调整:明确微调的具体目标,如提高模型在某一特定任务上的准确率、召回率等。同时,确定要调整的参数,包括学习率、优化器、正则化参数等。执行微调:在训练循环中依次进行前向传播、计算损失数据增强技术增加数据的多样性,提升模型的鲁棒性。常见的微调技术全参数微调和高效参数微调:全参数微调是使用预训练模型作为初始化权重,在特定数据集上继续训练,更新全部参数。高效参数微调则期望用更少的资源完成

行业资讯
大模型微调
大模型微调是指在预训练好的大模型基础上,使用特定领域的数据进行进一步训练,以适应特定任务或场景的过程。这种微调可以优化模型在特定任务上的表现,使其更加精准和专业。微调的作用在于调整模型的参数,使其更好地理解并处理特定领域的知识和语言模式。指令微调与使用特定领域数据进行的微调有联系也有区别。指令微调更多关注于调整模型对特定指令的理解和执行能力,而领域数据微调则侧重于让模型适应某一领域的语言风格和专业术语。两者都可以看作是大模型个性化和专业化的过程。在星环科技的大模型中,如果用户希望在金融分析领域使用该模型,可以通过提供金融相关的文本数据进行微调,使模型更好地理解和生成金融相关的报告或分析。星环大语言模型运营平台-SophonLLMOps为了帮助企业用户基于大模型构建未来应用,,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现领域大模型的训练、上架和选代。SophonLLMOps服务于大模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。

行业资讯
大模型微调流程
大模型微调流程包含明确任务与目标、选基底大模型、准备数据集、选目标函数、微调模型、迭代调整与更新、评估性能以及应用部署这几个主要步骤。大模型微调一般可分为以下步骤:1.明确任务与目标确定具体的应用场景和任务需求,例如是进行文本分类、情感分析、机器翻译,还是其他自然语言处理任务等,以便后续选择合适的数据集和评估指标。2.选择基底大模型综合考虑模型的性能、可扩展性、部署成本及任务适应性等因素,选择一个合适的预训练大模型作为基底模型。3.准备数据集收集数据:根据任务需求收集相关的数据,如对于文本分类任务,需要收集带有分类标签的文本数据;对于机器翻译任务,需要收集源语言和目标语言对应的文本数据等。数据预处理:对收集到的数据进行清洗、去噪、重复数据删除等操作,确保数据的质量。然后根据所选大模型的要求,对文本进行分词、编码等预处理操作,并将数据划分为训练集、验证集和测试集。4.选择目标函数根据监督模型最后一层增加投影层,并根据具体的回归或分类任务选择相应的损失函数,如均方误差损失、交叉熵损失等。5.微调模型加载预训练模型:使用相应的库和工具加载选定的预训练模型及对应的分词器等。配置微调参数:定义

行业资讯
AI大模型怎么训练?
AI大模型训练是先收集和预处理数据,接着选择并搭建模型架构,然后进行无监督预训练,再通过有监督微调或指令微调让模型适应具体任务,过程中进行优化与调参,最后对模型评估与监控。以下是一般的训练步骤:数据能力。模型预训练无监督学习:使用大量的无监督数据进行预训练,让模型自动学习数据中的语言模式、语义关系和知识结构。常见的无监督学习任务包括语言建模、掩码语言建模、下一句预测等,通过预测文本中的下一个单词、填补掩码位置的单词或判断两句话的先后顺序等方式,让模型学习语言的语法和语义规则。强化学习:近端策略优化(PPO)是一种强化学习算法,可用于训练智能代理程序以执行任务和决策,通过与环境互动,收集观测值输出进行评价和反馈,如给予奖励或惩罚,模型根据这些反馈调整自己的行为,以生成更符合人类期望的结果。这种方法可以使模型更好地理解人类的意图和偏好,提高模型的性能和可用性.模型微调有监督微调:在预训练的基础上,使用少量的有监督数据对模型进行微调,以适应特定的任务。通过在预训练模型的基础上添加一个或多个特定任务的输出层,并使用有监督数据对这些输出层进行训练,可以使模型快速适应新的任务,提高模型在该任务上
猜你喜欢
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果: