国内的大模型训练平台排名

星环模型运营平台
星环模型运营平台(Sophon LLMOps)是星环科技推出企业级模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将模型落地到生产和业务中去。Sophon LLMOps打通并优化了语料接入和开发、提示工程、模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升全链路流程。

国内的大模型训练平台排名 更多内容

模型训练平台是一个为开发者提供定制化模型解决方案平台,它汇集了行业内知名模型,通过轻量级训练和丰富训练方法,帮助开发者快速构建专属模型。以下是模型训练平台详细定义、功能和应用场景:定义模型训练平台是面向AI开发者一站式模型开发及服务运行平台,基于云管基座平台和算力平台,为用户提供从数据管理、模型训练模型管理到模型服务全流程开发支持。功能数据工程:提供数据导入、数据、模型调优、模型评测、模型量化编译等功能。平台提供丰富训练模型,用户可在平台上采用不同训练方式(预训练、监督微调SFT)进行模型训练,不断调优迭代模型效果,从而提升模型性能。服务部署:提供模型清洗、数据增强、数据管理等功能,并支持开源已处理数据集。用户可以根据实际需求,依照平台数据格式要求上传数据信息或使用平台开源数据集,为后续训练、评估、编译等流程提供支撑。模型开发:提供模型训练自动驾驶安全性和可靠性。个性化推荐:在电商与社交平台中,模型通过分析用户行为和偏好,为用户提供精准广告、内容和商品推荐,从而提升了用户体验和营销效果。
模型训练平台是指提供必要计算资源和工具,用于训练规模机器学习模型环境。这些平台通常包括高性能计算资源如GPU和TPU,以及数据存储和处理能力,支持深度学习框架,以便构建和优化复杂神经网络模型。例如,星环科技模型训练平台就集成了其在数据处理、存储和计算方面的优势,为用户提供高性能计算资源、规模数据管理能力以及深度学习框架支持。星环语言模型运营平台——SophonLLMOps为了帮助企业用户基于模型构建未来应用,星环科技推出了模型持续提升和开发工具SophonLLMOps,实现领域模型训练、上架和选代。SophonLLMOps服务于模型开发者,帮助企业快捷地构建自己行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代”人工智能应用。
国内各大互联网公司纷纷投入AI模型研发,涉及多种类型模型。以下是星环科技模型相关产品:星环无涯金融模型-TranswarpInfinity星环无涯金融智能投研模型新范式。星环科技无涯金融模型核心优势:一是利用海量金融专业语料和舆情工商产业链大宗卫星等多源数据进行训练,使其具备领域通用性。二是构建了可溯因标准化因子和归因解释体系,为投资决策提供支持。三是自然语言,就能利用“求索”模型获取所需数据分析、展示和报告。星环语言模型运营平台-SophonLLMOps为了满足企业应用语言模型需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应模型持续开发和训练工具——SophonLLMOps。这款工具旨在帮助企业构建自有的行业大模型,通过大模型基础设施打造面向未来、具备“新型人机交互”且“敏捷可持续迭代”人工智能应用。针对语言模型及其衍生数据、模型和应用方面的问题,SophonLLMOps工具链需要完成从通用语言模型训练和微调、模型上架到模型持续运营及提升迭代全流程任务,从而成功构建满足企业自身业务特点领域
行业资讯
模型训练
模型训练是一种机器学习方法,通过训练规模模型来提高训练速度和减少训练时间。在训练过程中,通常使用并行计算方法来加速训练。同时,为了处理规模数据和模型,需要使用更高效算法和优化技术,例如数据并行、模型并行、流水线并行和张量并行等。此外,模型训练还需要考虑存储和网络通信问题,例如如何有效地存储和传输规模数据和模型。在训练过程中,需要使用更多计算资源和存储资源,因此需要更高效地管理和调度这些资源。随着深度学习和数据技术发展,模型训练已经成为机器学习领域重要研究方向之一。星环科技模型训练工具,帮助企业打造自己专属模型星环科技在行业内首先提出行业大模型应用创新了SophonLLMOps,帮助企业构建自己行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用语言模型训练/微调,得到“满足自身业务特点领域语言模型”;第二,帮助客户将场景,推出相应工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出
行业资讯
AI模型训练
,并最终部署到实际应用中。AI模型训练需要大量计算资源和专业知识,旨在使模型能够理解和生成高质量文本内容。星环语言模型运营平台——SophonLLMOps为了帮助企业用户基于模型构建未来AI模型训练是一个复杂过程,涉及使用深度学习技术对模型进行规模数据训练。以星环科技无涯为例,作为一个基于规模语言模型智能助手,其训练过程通常包括以下几个关键步骤:数据收集:收集大量应用,星环科技推出了模型持续提升和开发工具SophonLLMOps,实现领域模型训练、上架和选代。SophonLLMOps服务于模型开发者,帮助企业快捷地构建自己行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代”人工智能应用。文本数据,这些数据可以来自互联网、书籍、文章等多源渠道,对于政务模型而言,则侧重于政务相关文档和资料。数据预处理:清洗和格式化数据,去除噪声和无关信息,确保数据质量。模型构建:设计神经网络架构,用于处理序列数据。训练过程:使用GPU或TPU等高性能计算资源对模型进行迭代训练,调整参数以最小化损失函数。评估与优化:在验证集上评估模型性能,并根据结果进行调优。测试与部署:在测试集上进一步验证模型效果
语言表达,对于训练具有专业领域知识模型非常有价值,但需要注意版权问题。社交媒体数据:社交媒体平台用户生成内容,反映了当下社会热点、用户情感和各种生活场景,能够为模型提供更贴近实际应用语言样本模型训练语料是指用于训练人工智能模型文本数据集合。特点规模性:模型通常需要海量语料来学习丰富语言知识和语义信息,以提高模型泛化能力和性能。一般来说,训练数据规模越大,模型能够学习到,但数据噪声较大,需要进行有效处理和筛选。企业数据:一些企业拥有大量内部数据,如客服记录、产品描述、用户评论等,这些数据与企业业务和用户需求密切相关,可用于训练针对特定行业或领域模型,以提高质量和标注准确性,可直接用于特定任务模型训练或作为预训练数据一部分。书籍、文献和论文:包括各种专业书籍、学术文献、研究论文等,这些文本数据经过专业编辑和审核,质量较高,蕴含着丰富专业知识和深度。标注数据可用于监督学习,帮助模型学习特定任务特征和模式,提高模型在该任务上性能。数据划分:将语料划分为训练集、验证集和测试集。训练集用于模型训练,验证集用于在训练过程中调整模型超参数和评估模型
大小、优化器等,并决定在哪个硬件平台上进行训练训练过程:使用量计算资源对模型进行长时间训练。这个过程可能需要几天到几个月时间,具体取决于数据量和硬件性能。评估与调整:在验证集上评估模型性能,并根据结果调整超参数或修改模型结构。部署与维护:将训练模型部署到生产环境,并持续监控其性能,必要时进行更新和维护。星环语言模型运营平台-SophonLLMOps为了帮助企业用户基于模型构建未来应用,星训练自己模型是一个复杂过程,通常涉及以下几个关键步骤:数据收集:首先,你需要收集大量训练数据。对于自然语言处理模型,这可能意味着获取数百万到数十亿文字数据。数据可以来自书籍、网页、新闻环科技推出了模型持续提升和开发工具SophonLLMOps,实现领域模型训练、上架和迭代。SophonLLMOps服务于模型开发者,帮助企业快捷地构建自己行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“人工智能应用。文章等多种来源。预处理:数据需要进行清洗和预处理,包括去除噪声、标准化文本格式、分词等,以确保模型能够有效地学习。模型设计:选择或设计适合你任务模型架构。训练设置:配置训练参数,如学习率、批次
行业资讯
模型训练
模型训练模型训练过程中关键环节。让模型学习到广泛语言知识、语义理解能力和各种模式,以便在后续微调或直接应用中能够更好地适应各种具体任务,如文本生成、问答、翻译等。关键步骤数据收集与预处理收集海量数据:从多种渠道收集大量文本数据,来源涵盖互联网文章、书籍、新闻报道、学术论文、社交媒体等,以覆盖各种领域和主题,为模型提供丰富语义信息。例如训练一个通用语言模型,可能会收集数十亿甚至规模数据中发现模式和规律。常见训练任务包括语言模型任务,即预测文本序列中下一个单词或字符;以及掩码语言模型任务,随机掩盖输入文本中一些单词或字符,让模型预测这些被掩盖内容。数据源采样与平衡。同时,可根据需要扩充词表,如添加常见汉字等,以提高模型对特定语言或领域适应性。模型选择与架构搭建选择合适训练模型基座:模型架构在自然语言处理任务中表现出色,具有高效特征提取和表示能力,能够为预训练提供良好基础。设计与优化模型结构:加入注意力机制优化,如多查询注意力机制、快速注意力机制,以及位置嵌入策略,以加速训练并提高模型性能。预训练过程无监督学习:采用无监督学习方式,让模型自动从
行业资讯
模型 训练
模型训练是指使用规模数据集进行模型训练过程。模型训练目标主要是提高模型准确性和泛化能力,以便更好地应对各种实际应用场景。模型训练是一个需要结合多种策略和技术复杂过程,需要在保证准确性和泛化能力同时,尽可能提高训练速度和效率。模型持续开发和训练工具为了满足企业应用语言模型需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应模型持续开发和训练工具,SophonLLMOps工具链需要完成从通用语言模型训练和微调、模型上架到模型持续运营及提升迭代全流程任务,从而成功构建满足企业自身业务特点领域语言模型。在模型训练微调阶段,SophonLLMOps工具链需要覆盖训练数据开发、推理数据开发和数据维护等工作,对语言模型所涉及原始数据、样本数据和提示词数据进行清洗、探索、增强、评估和管理。在模型运维管理阶段,除了传统MLOps——SophonLLMOps。这款工具旨在帮助企业构建自有的行业大模型,通过大模型基础设施打造面向未来、具备“新型人机交互”且“敏捷可持续迭代”人工智能应用。针对语言模型及其衍生数据、模型和应用方面的问题
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...