ai大模型训练数据集

星环模型运营平台
并优化了语料接入和开发、提示工程、模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。星环模型运营平台(Sophon LLMOps)是星环科技推出的企业级模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将模型落地到生产和业务中去。Sophon LLMOps打通

ai大模型训练数据集 更多内容

行业资讯
AI模型训练
AI模型训练是一个复杂的过程,涉及使用深度学习技术对模型进行规模的数据训练。以星环科技的无涯为例,作为一个基于规模语言模型的智能助手,其训练过程通常包括以下几个关键步骤:数据收集:收集大量处理序列数据训练过程:使用GPU或TPU等高性能计算资源对模型进行迭代训练,调整参数以最小化损失函数。评估与优化:在验证上评估模型性能,并根据结果进行调优。测试与部署:在测试上进一步验证模型效果,并最终部署到实际应用中。AI模型训练需要大量的计算资源和专业知识,旨在使模型能够理解和生成高质量的文本内容。星环语言模型运营平台——SophonLLMOps为了帮助企业用户基于模型构建未来文本数据,这些数据可以来自互联网、书籍、文章等多源渠道,对于政务模型而言,则侧重于政务相关的文档和资料。数据预处理:清洗和格式化数据,去除噪声和无关信息,确保数据质量。模型构建:设计神经网络架构,用于应用,星环科技推出了模型持续提升和开发工具SophonLLMOps,实现领域模型训练、上架和选代。SophonLLMOps服务于模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代”的人工智能应用。
模型训练数据是其性能和泛化能力的关键。常见类型文本数据:是模型训练中最常见且基础的一种数据类型。包括新闻报道、小说、论文、百科知识、社交媒体帖子、评论等各种文本来源。例如,大量的新闻文章能够领域的专业性和针对性,对于训练面向该领域的模型具有重要价值,能够使模型更好地理解和处理相关业务场景下的问题,但企业在使用自有数据时,也需要注意数据的合规性和用户隐私保护。学术研究机构:高校、科研院所等学术机构在开展科研项目过程中,会收集和整理一些特定领域的数据,用于学术研究和实验。部分学术机构也会将其收集的数据公开共享,为模型训练提供有价值的数据资源,推动相关领域的研究和发展。构建过程数据收集多维度标注,以提供更丰富的语义信息。数据划分:将经过清洗和标注的数据划分为训练、验证和测试训练用于模型训练,验证用于在训练过程中调整模型的参数和评估模型的性能,测试则用于最终对模型的性能进行评估和比较。、监控摄像头等。音频数据:包括语音、音乐、环境声音等。例如,语音数据可以是人们日常对话、演讲、广播等的录音,通过对这些数据的学习,模型能够实现语音识别、语音合成等功能;音乐数据则包含各种风格、类型的
行业资讯
AI模型训练
AI模型是指拥有数百万以上参数规模的深度神经网络模型,需要通过存储更多的参数来增加模型的深度和宽度,从而提高模型的表现能力。这类模型在经过专门的训练后,即可对海量数据进行复杂处理和任务处理。AI模型训练是指利用大规模数据和计算资源对深度学习模进行训练,以提高模型的准确性和适应性,以达到更好的预测和决策结果。一般来说,AI模型训练需要满足以下几个条件:大规模数据AI模型训练需要有大量的训练数据,以确保模型具有足够的泛化能力,能够适应各种用例和场景。高效的计算资源:AI模型训练需要大量的计算资源,包括CPU、GPU、TPU等。这些资源需要能够高效地运行模型训练任务,以提高训练效率和准确率。优秀的算法和模型结构:AI模型训练需要采用先进的深度学习算法和模型结构,以提高模型的达能力和泛化能力。利用AI模型训练,可以提高模型的预测和决策能力,以解决各种具有挑战性的问题,比如自然语言需要覆盖训练数据开发、推理数据开发和数据维护等工作,对语言模型所涉及的原始数据、样本数据和提示词数据进行清洗、探索、增强、评估和管理。在模型运维管理阶段,除了传统MLOps的六统一,即统一纳管
:对原始数据进行清洗、整理和标注,以符合训练AI模型的标准和要求。模型构建:设计和调整模型架构,可能需要对基础模型进行微调或者迁移学习。模型训练:利用准备好的数据模型进行训练,评估模型在特定任务AI模型训练方法涉及数据预处理、模型构建、分布式训练、优化技术应用、正则化、学习率调整和迁移学习等关键步骤,以提升模型性能和加速训练过程。AI模型训练方法主要包括以下几个关键步骤:数据预处理上的性能表现,并进行多轮迭代优化,直到模型达到预定的性能指标和精度要求。模型评估:对训练好的模型进行评估,以了解其在训练和验证上的表现,并根据评估结果对模型进行调整,如调整模型结构、参数设置等,以提高模型性能。分布式训练:为了加速模型训练,采用数据并行和模型并行等分布式训练技术,以提高计算效率。优化技术:优化算法,在训练过程中自适应地调整学习率,提高模型的收敛速度。正则化和学习率调整:通过引入正则化项降低模型过拟合的风险,并在训练过程中调整学习率以适应模型的表现。迁移学习:利用预训练模型在相关任务上的知识,提高模型在新任务上的表现。
AI模型训练是先收集和预处理数据,接着选择并搭建模型架构,然后进行无监督预训练,再通过有监督微调或指令微调让模型适应具体任务,过程中进行优化与调参,最后对模型评估与监控。以下是一般的训练步骤:数据、组织机构名标注等,用于监督学习。数据划分:将数据划分为训练、验证和测试训练用于模型训练,验证用于调整模型的超参数和评估模型的性能,防止过拟合,测试用于最终评估模型在未见过数据上的泛化能力。模型训练无监督学习:使用大量的无监督数据进行预训练,让模型自动学习数据中的语言模式、语义关系和知识结构。常见的无监督学习任务包括语言建模、掩码语言建模、下一句预测等,通过预测文本中的下一个单词基础上,使用少量的有监督数据模型进行微调,以适应特定的任务。通过在预训练模型的基础上添加一个或多个特定任务的输出层,并使用有监督数据对这些输出层进行训练,可以使模型快速适应新的任务,提高模型在该任务上根据给定的主题或条件生成符合要求的文本。模型优化与调参优化算法选择:选择合适的优化算法,来更新模型的参数,以最小化损失函数。不同的优化算法在不同的数据模型结构上可能有不同的表现,需要根据具体情况进行
情况和任务。模型AI通常使用深度学习框架,来构建和训练模型。这些框架提供了强大的工具和库,使研究人员能够更容易地处理大规模数据,构建复杂的神经网络结构,并进行高效的计算。模型AI的应用非常广泛模型AI是指使用大量数据和计算资源来训练高级人工智能(AI模型的技术。随着数据的大量增长和计算能力的提高,AI系统的性能也在不断提高。模型AI的目标是提高AI系统的表现,使其更加适应各种复杂的。然而,模型AI的培训和推理需要大量的计算资源和时间。模型AI通常需要强大的硬件基础设施和优化的软件环境才能运行。星环科技模型训练工具,帮助企业打造自己的专属模型星环科技在行业内首先提出行业大模型了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用语言模型训练/微调,得到“满足自身业务特点的领域语言模型”;第二,帮助客户将原型的语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用的语言模型模型的持续提升。除此之外,星环科技在行业首先推出了两行业大模型:服务于金融行业的星环金融模型无涯,以及大数据分析模型SoLar“求索”。
行业资讯
AI模型技术
AI模型技术是指利用大规模数据和计算资源训练的深度学习模型,这类模型具有强大的泛化能力和复杂的结构,能够在多个领域实现超越传统方法的性能。AI模型的关键特征包括:1.预训练技术无监督预训练:这是模型训练的重要阶段。模型规模的无监督数据上进行学习,例如互联网上的文本、图像等。预训练与微调结合:先进行无监督预训练后,再使用少量有监督数据针对特定任务进行微调。2.多模态融合技术特征表示融合:在多模态模型中,需要将不同模态(如文本、图像、音频)的数据转换为统一的特征表示进行融合。量化技术:将模型的参数从高精度转换为低精度,减少参数存储所需的空间,同时也能加快计算速度。剪枝技术:通过去指标。可解释性技术:由于模型通常是黑盒模型,理解其决策过程很重要。一些技术如特征重要性分析、注意力可视化等可以帮助解释模型。除模型中不重要的连接或神经元,减少模型的复杂度。例如,根据参数的重要性评估,将一些对模型性能影响较小的参数剪掉,在保证模型性能基本不变的情况下,降低模型的计算量和存储量。3.模型评估与解释技术评估指标
AI训练管理平台:开启智能新时代AI训练管理平台是什么?AI训练管理平台,从本质上来说,是一个成了多种人工智能算法和模型的软件系统,其核心任务是进行人工智能模型训练与优化。在这个平台上,数据收集相关的数据数据来源可以是公开数据、企业内部数据或通过网络爬虫获取的数据。收集到的数据往往存在噪声、缺失值和重复值等问题,需要进行清洗和预处理。(五)模型训练模型训练AI训练管理平台的核心科学家和机器学习工程师能够轻松地对各种数据进行处理和分析,进而训练出满足不同需求的人工智能模型。以图像识别领域为例,研究人员可以将大量的图像数据导入AI训练管理平台。平台会对这些图像进行预处理,如降噪合适的服务器,配备足够的CPU、GPU、内存和存储设备。在软件方面,安装操作系统、深度学习框架、数据库等必要的软件。(四)数据准备数据AI模型训练的“燃料”,数据准备的质量直接影响模型的性能。我们需要训练语言模型,让机器能够理解和生成人类语言,实现智能聊天、文本摘要、机器翻译等功能。搭建AI训练管理平台的关键步骤搭建AI训练管理平台是一项复杂而系统的工程,需要遵循一系列严谨的步骤,以确保平台能够
行业资讯
模型训练
模型训练是指在大规模数据上利用高性能计算资源,对拥有大量参数的深度学习模型进行训练的过程。模型通常指的是拥有数百万到数十亿参数的深度学习模型。这些模型通过处理大量数据,能够学习到复杂的模式和泛化能力:如何确保在未见过的数据上表现良好是一个持续的研究课题。模型训练是现代AI研究的核心组成部分,它不仅推动了技术的进步,也带来了新的挑战。星环语言模型运营平台-SophonLLMOps为了:重复前向传播和反向传播过程,直到达到预定的迭代次数或满足停止条件。计算资源需求高:模型训练需要大量的GPU资源和存储空间。数据质量和偏见问题:低质量的数据或存在偏见的数据会影响模型性能和公平性。模型特征,从而在各种任务上表现出色,如自然语言处理、图像识别和语音识别等。数据准备:收集和预处理大量的训练数据是第一步。这包括清洗数据、标注数据以及将其转换为适合模型输入的形式。模型设计:根据任务需求选择帮助企业用户基于模型构建未来应用,星环科技推出了模型持续提升和开发工具SophonLLMOps,实现领域模型训练、上架和迭代。SophonLLMOps服务于模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。
索引是数据库中某些数据的冗余副本,目的是使查询性能更优。作为代价,数据库需要额外存储空间和较慢写入速度,因此决定哪些字段需要索引是一项重要且不易的任务。(新)StellarDB5.0.1版本不再对旧版本使用的manipulatecreate_index和manipulatedelete_index语法进行支持,在新版本中统一使用createindex和dropindex进行索引的创建和删除新增索引CREATEINDEX[IFNOTEXISTS]FOR(LabelName)ON[f1,f2,...];CREATEINDEX[IFNOTEXISTS]FOR[LabelName]ON[f1,f2,...];不支持对TIME_SERIES类型的属性创建索引默认情况下,对同一个Label的某个属性多次创建索引会报错;但如果带有IFNOTEXISTS,则不会抛出任何错误包裹点边LabelName的括号不同,注意区分示例1.在点labelperson的属性name和age上建立索引CREATEINDEXIFNOTEXISTSFOR(person)ON[name,age];示例2.在边labelask...
产品文档
3 安装 StellarDB
3.1在TDH平台安装StellarDB3.2StellarDB安装校验3.3StellarDB低版本升级至StellarDB5.0.1
产品文档
6.1 图计算
StellarDB5.0.1版本对图算法场景进行了大规模改进和提升,内置算法性能得到较大提升。在语法方面,StellarDB5.0.1的内置图算法对于返回的节点,会直接以节点类型返回。因此可以直接使用uid(vertex)访问节点的uid,而不再需要node_rk_to_uid函数进行uid的转换。可以参考PageRank等函数。另外,对于图算法返回的节点,我们也可以灵活的访问其其他属性作为返回值。图计算简介StellarDB的图计算使用TEoC语句调用相应图算法。算法的输入数据为图的点、边数据。当前版本中图计算支持结果返回、结果导出和结果写回。在使用图算法时,使用configcrux.execution.modeanalysis;语句切换到分析模式下使用图算法语句。图数据视图StellarDB支持创建一个可被持久化的视图,用于加速图算法执行过程。创建视图创建视图的语法如下所示:createquerytemporarygraphviewGRAPH_VIEW_NAMEas(v)[e]withGRAPH_ALGO(@GRAPH_VIEW_NAME,VIEW_STORE_PATH,CONFI...
产品文档
4 快速入门
快速上手本章节将引导您快速熟悉StellarDB,并为您初步介绍如何通过KGExplorer和beeline客户端操作StellarDB。其中,"StellarDB初探"一节通过构建一张人物关系图,从零介绍如何在StellarDB进行基本操作;"StellarDB进阶"一节为您提供了内置于StellarDB的《哈利·波特》人物关系图,帮助您进一步探索StellarDB。StellarDB初探使用KGExplorer构建图从Manager页面进入KGExplorer页面。若KGExplorer开启了单点登录,会自动跳转Federation登录页面,按如图方式登录:KGExplorer用戶开启方法以及详细使用说明请查看章节《KGExplorer使用文档》。点击登录后进入KGExplorer主页面。我们首先需要构建图名为"hello_world"的图。在主页面右上角点击创建图按钮开始图谱schema的构建。按照引导填写图基本信息后点击确定进入构建页面。在画布中,我们为"hello_world"图创建Boy和Girl两种类型的点,两种类型的点均包含name、salary、age、single四...
产品文档
5.12 变量声明
声明简介声明是指为特定数据类型的变量分配一定的存储空间,并命名该变量以便引用它;必须先声明变量,然后才能引用它;对声明的变量可以进行赋值操作来改变它的值;声明的变量其作用域是Session级别的。变量声明使用decl关键字声明一个变量必须为变量指定名称和类型,且名称不能与已有的变量名相同。声明但未赋值的变量的默认值为null。变量名声明对大小写敏感。变量声明的语句遵循如下格式:DECL[<variable_name>:<variable_type>];使用方法示例如下表所示:语句说明declx:int;声明一个类型为int的变量xdecls:string;声明一个类型为string的变量sdecll:long;声明一个类型为long的变量ldeclb:boolean;声明一个类型为boolean的变量bdecld:double;声明一个类型为double的变量ddecltime:localdatetime;声明一个类型为localdatetime的变量timedecld1:decimal;声明一个类型为decimal的变量d1decllist1:list[int...
产品文档
7.1 自定义函数
StellarDB支持用户添加自定义函数,添加后可在cypher语句中使用。自定义函数实现自定义函数通过java/scala语言开发,可继承实现两种基类,编译成jar包,通过指定命令加载到StellarDB。需要实现的基类为如下两种,可自行选择继承合适的基类:继承UDF基类继承GenericUDF基类。继承UDF基类该类实现简单,功能较为单一。支持Quark的基本类型、数组和Map。适合实现简单的逻辑。继承org.apache.hadoop.hive.ql.exec.UDF类继承UDF类必须实现evaluate方法且返回值类型不能为void,支持定义多个evaluate方法不同参数列表用于处理不同类型数据。@Description(name="my_plus",value="my_plus()-ifstring,doconcat;ifinteger,doplus",extended="Example:\n>selectmy_plus('a','b');\n>ab\n>selectmy_plus(3,5);\n>8")/***实现UDF函数,若字符串执行拼接,in...
为什么引入动态图模型?在实际应用过程中很容易可以发现,图数据在很多图数据的应用场景中并不是静态不变的,而是动态演进的,这些场景中包括例如金融反欺诈场景中金融交易网络随着时间的推进而发生的交易变化、交易社群变化等;又比如社交网络中新增用户、用户关注或者取消关注、更改账户信息等。将图数据变化的历史记录下来,不仅可以用于历史数据规律的总结,还可以利用动态图数据进行动态图神经网络相关技术的研究,从而进一步挖掘数据中潜在的数据价值和更加灵活高效的业务场景,譬如预测某一个时刻某一事件是否会发生。动态图模型的动态变化图数据的动态变化主要分为两类,一类是节点或边的属性的值的变化;另一类变化是子图(结构)的变化,如新增/删除点边。这两种图数据的动态变化可以单独发生,也可以同时发生。从图数据的属性变化角度来看,StellarDB5.0.1动态图模型可以记录图中节点或者边属性的所有历史版本(而非新数据覆盖旧数据)。在实际数据开发使用中,还可以结合诸如柱状图、趋势图等对历史数据进行可视化,更加直观、更加适合业务使用。从图数据的子图(结构)的角度来看,StellarDB5.0.1动态图模型还可以返回不同时间子图...
产品文档
5.10 表达式
类型表达式类型例子十进制型整数10,-213十进制小数1.25,3.604E-14,-2.31十进制型长整数199345843592l,-12381543923L任意精度的有符号十进制数123bd,123.31BD八进制整数(0开头)084,-096字符串"星环",'信息科技'布尔类型true,false,TRUE,FALSE数组类型[1,2,3],["星环","信息科技"],[decimal(10.2,3,1),decimal(100.2,3,2)],[localdatetime("2021-01-18T09:50:12.627"),localdatetime("2021-11-18T03:50:12.113")]时间类型localdatetime("2021-01-18T09:50:12.627")Decimal类型decimal(10.2,3,1)地理空间类型point(20.5,30.5),point(-20.5,-30.5)时序类型{localdatetime("2023-01-01T15:16:17")::"nice"},{localdatetime("1997-01-01...
通过beeline或JDBC时,设置参数configquery.langcypher;将查询语言切换为TEoC模式。根据使用场景选择查询模式(默认为immediate模式)immediate模式通常用于并发及短查询场景,查询结果和中间结果通常不超过百万。通过configcrux.execution.modeimmediate;切换。analysis模式通常用于分析场景,创建图、插入数据以及图算法相关的语句必须在该模式下进行。通过configcrux.execution.modeanalysis;切换。
本章节的示例语句均可在示例图my_graph中执行,执行前请先创建示例图my_graph,建图语句如下:creategraphmy_graphwithschema(:Boy{namestring,salarydouble,ageint,singleboolean,birthdaylocaldatetime,reservelong,ratedecimal(38,10),hobbysarray<string>,geoPointgeo<double>})(:Girl{namestring,salarydouble,ageint,singleboolean,birthdaylocaldatetime,reservelong,ratedecimal(38,10),hobbysarray<string>,geoPointgeo<double>})[:Friend{sinceint}][:Likes{sinceint}]graphproperties:{`graph.shard.number`:3,`graph.replication.number`:...