专业分析型数据库
星环分布式数据库(Transwarp ArgoDB)是星环科技自主研发的分布式数据库,可以替代Hadoop+MPP混合架构。支持标准SQL语法,提供实时数据处理、存算解耦、混合负载、数据联邦、异构服务器混合部署等领先技术能力。通过一个ArgoDB数据库,就可以满足数据仓库、实时数据仓库、数据集市、OLAP、AETP、联邦计算等各种需求。降低平台复杂性和IT总拥有成本的同时,提升业务响应速度。
专业分析型数据库 更多内容

行业资讯
分析型数据库
分析型数据库是面向分析应用的数据库,与传统的数据库不同,分析型数据库可以对数据进行在线统计、数据在线分析、随即查询等发掘信息数据价值的工作,是数据库产品一个重要的分支。分析型数据库的主要目标是提供快速、高效的数据分析和查询处理,以便做出准确的业务决策。与事务型数据库相比,分析型数据库更注重对数据仓库的支持,以及对复杂查询和数据挖掘的需求。分析型数据库专注于支持复杂的查询和分析工作负载,以及提供高效的数据存储和查询性能,是支持数据分析和决策制定的重要工具。星环分布式数据库-TranswarpArgoDBArgoDB是星环科技自主研发的高性能分布式数据库,在PB级数据量上提供极致的数据分析能力。多模型数据库ArgoDB支持标准SQL语法、分布式事务和存算解耦,提供高并发高速数据写入、复杂查询、多模分析和数据联邦等能力。通过一个ArgoDB数据库,就可以打造离线数据仓库、实时数据仓库、数据集市兼容Oracle、IBMDB2、Teradata数据库对SQL语言的扩展,目前已在各行各业成功完成Oracle、DB2、Teradata等国外产品的国产化替代。2019年8月,ArgoDB成为全球第四个通过TPC-DS基准测试并经过TPC官方审计的数据库产品。

行业资讯
分析型数据库和关系型数据库
分析型数据库和关系型数据库是两种不同用途的数据库系统,它们在设计、功能和优化方面有所不同。以下是它们的主要区别:用途:分析型数据库:主要用于数据仓库和大数据分析,支持复杂的分析查询,如数据挖掘、预测分析和趋势分析。关系型数据库:主要用于事务处理系统,如客户关系管理(CRM)、企业资源规划(ERP)等,支持日常的事务处理和操作。查询类型:分析型数据库:优化了对大数据集的读操作,特别是聚合查询和扫描大量记录。关系型数据库:优化了对小到中等数据集的读写操作,特别是点查询和事务处理。数据模型:分析型数据库:通常使用多维数据模型(如星型模型或雪花模型),这些模型适合于分析型查询。关系型数据库:使用关系模型,数据以表格的形式存储,通过行和列组织数据。性能优化:分析型数据库:针对分析查询进行了优化,如使用列式存储、数据立方体和预计算。关系型数据库:针对事务处理进行了优化,如使用行式存储、索引和事务日志。数据更新频率:分析型数据库:数据通常以批量方式加载,更新频率较低。关系型数据库:数据更新频繁,支持高并发的读写操作。数据规模:分析型数据库:设计用于处理大规模数据集,通常存储在数据仓库中。关系型

行业资讯
什么是分析型数据库?
什么是分析型数据库?分析型数据库是一种专门用于存储和处理大量结构化数据的数据库系统,它的设计目标是支持复杂的数据分析和挖掘操作,提供高性能、可扩展的查询和分析方案。与传统的关系型数据库相比,分析型数据库具有更高的处理速度,更灵活的架构,更适合大规模数据的查询和分析,以及更优化的资源利用方式,是商业智能(BI)及数据挖掘分析领域的重要工具。分析型数据库的应用包括金融分析、CRM、市场分析、科学实验室、医疗、物流等多个领域。星环分布式数据库-TranswarpArgoDBArgoDB是星环科技自主研发的高性能分布式数据库,在PB级数据量上提供极致的数据分析能力。多模型数据库ArgoDB支持标准SQL语法、分布式事务和存算解耦,提供高并发高速数据写入、复杂查询、多模分析和数据联邦等能力。通过一个ArgoDB数据库,就可以打造离线数据仓库、实时数据仓库、数据集市和联邦计算平台等数据分析系统,提供、Teradata数据库对SQL语言的扩展,目前已在各行各业成功完成Oracle、DB2、Teradata等国外产品的国产化替代。2019年8月,ArgoDB成为全球第四个通过TPC-DS基准测试并经过TPC官方审计的数据库产品。

分析型数据库(AnalyticalDatabase)主要对来自交易数据库或其他数据源的历史数据进行高效地批量查询或分析,主要用于企业内部数据决策分析、数字化运营等领域。相较于传统的关系型数据库分析型数据库的主要优势在于其对“读”操作的高效性能。传统的关系型数据库对“写”操作进行了优化,以支持高并发、高事务的场景,但对于复杂的聚合分析等查询操作,效率会大打折扣。而分析数据库则专门针对“读”操作进行优化,支持复杂的多维分析、跨表连接等高效查询,速度比传统的关系型数据库快数倍甚至是数十倍。此外,分析型数据库支持列式存储,与传统的行式存储不同,列式存储将同列的数据存储在一起,由于同一列中的数据。分析型数据库还常提供一系列高级数据分析的功能,如多维分析OLAP(OnlineAnalyticalProcessing),数据挖掘和机器学习等,这些功能可以帮助用户更更准确地发现数据之间的关联性和隐藏的规律,进而利用这些信息做出更加准确的预测。分析型数据库是一种专门用于企业内部数据分析的解决方案,帮助企业更好地应对竞争、优化业务、更快地做出合理决策。对于那些需要分析海量历史数据的企业来说,分析型

行业资讯
olap数据库(分析型数据库)
OLAP(On-lineAnalyticalProcessing)数据库是一种用于支持维分析和数据挖掘的数据库技术。与传统的关系型数据库(RDBMS)相比,具有更强大的分析和查询能力。OLAP数据库源:OLAP数据库可以支持多种数据源,包括关系型数据库、Excel表格、文本文件等。此外,OLAP数据库还可以通过数据仓库(DataWarehouse)进行数据整合和抽取,以提供全面的数据分析和决策支持,从而做出更准确、更有效的决策。OLAP数据库具有以下特点:面向决策支持:OLAP数据库的设计目的是为了支持决策制定和商务智能,因此它通常包含了许多高级的分析和报表功能,例如数据挖掘、趋势分析、预算比较等。多维数据分析:OLAP数据库的核心是多维数据分析,它允许用户从多个角度和聚合层次对数据进行查询和分析。例如,用户可以按时间、地域、产品等多个维度来分析销售数据,从而得到不同时间段、不同地区、不同计算。快速的数据响应:随着数据规模的不断扩大,OLAP数据库需要能够快速地处理和分析大量数据。因此,OLAP数据库通常采用了一些优化技术,如预计算、缓存、分区等,以提高查询性能。支持多种数据

行业资讯
国产化关系型数据库
性能优化问题,国内厂商的技术支持团队迅速响应,派遣专业工程师到现场进行调研和分析,通过优化数据库配置和查询语句,成功提升了数据库的性能,而整个服务过程的成本相对较低。国产化数据库的低维护和服务成本还这些培训和交流活动,企业能够及时了解数据库的最新技术和应用案例,为企业的数字化转型提供有力支持。(三)定制化能力强不同行业的企业在数据存储、处理和分析方面有着独特的需求,国产化关系型数据库厂商凭借对本国产关系型数据库:崛起的数字新势力一、国产化关系型数据库的崛起(一)发展背景在数字化时代,数据已成为企业和国家的核心资产,数据安全的重要性不言而喻。数据安全不仅关系到个人隐私和企业的商业利益,更与国家安全紧密相连。一旦数据泄露或被恶意篡改,可能引发严重的后果,从个人信息被滥用,到企业的商业机密被窃取,甚至影响到国家关键基础设施的稳定运行。过去,我国许多企业和机构依赖国外的关系型数据库产品。这些复杂多变的背景下,依赖国外数据库还可能面临技术封锁、服务中断等风险,严重影响企业和国家的正常运转。因此,发展国产化关系型数据库,实现数据的自主可控,成为保障国家信息安全的必然选择。国产化关系型数据库能够从

行业资讯
国产关系型数据库
分析《中国分析型数据库市场研究报告》,并获得金猿奖“2021大数据产业创新服务产品”等多项荣誉。星环分布式数据库-TranswarpArgoDBArgoDB是星环科技自主研发的高性能分布式数据库,在PB关系型数据库是一种基于关系模型的数据库管理系统,关系型数据库使用结构化的查询语言进行数据操作和管理。关系型数据库是一种高度结构化的数据存储和检索系统,可以有效地组织和管理大量数据,同时提供数据完整性、安全性、并发控制和事务处理等功能。国产关系型数据库星环分布式交易型数据库-TranswarpKunDBKunDB是星环科技基于分布式技术自主研发的国产化的交易型数据库,提供完整的关系型数据库的能力级数据量上提供极致的数据分析能力。多模型数据库ArgoDB支持标准SQL语法、分布式事务和存算解耦,提供高并发高速数据写入、复杂查询、多模分析和数据联邦等能力。通过一个ArgoDB数据库,就可以打造,能够实现MySQL,Oracle等传统主流数据库的国产化替代。独特的混合部署技术支持主流国产化CPU等自主可控的硬件平台和OS部署,满足国产化部署需求。KunDB提供全链路高可用、一致性备份恢复等容灾

行业资讯
时序型数据库
流。时序型数据库适用于存储和分析与时间相关的数据,例如传感器、日志数据、监控数据等。它们被广泛应用于物网、金融、电信等行业,可以帮助用户实时监控和分析数据,发现趋势和异常情况。星环分布式时序数据库时序型数据库是一种专门用于存储、处理和查询时间相关数据的数据库。在时序型数据库中,数据的时间戳是主要的索引,用于快速定位和访问数据。时序型数据库通常具有高效的写入和查询性能,可以处理大规模的实时数据-TranswarpTimeLyreTranswarpTimeLyre是星环科技自主研发的企业级分布式时序数据库,其支持分布式水平扩展,同时具有极高的压缩率可以支持海量时序数据的存储,提供高吞吐实时写入、时序精确查询、多维检索等功能,可以有效支撑物联网、能源制造、金融量化交易领域等多种时序数据业务场景。原生分布式架构,集群灵活扩展,轻松实现海量时序数据存储分析TimeLyre采用原生分布式架构,支持集群在线扩缩容,可满足海量时序数据存储和分析需求。TimeLyre的存储组件TimeLyreStorage主要由分布式数据管理系统与时序存储引擎构成。分布式数据管理系统负责分布式元信息的一致性存储与

行业资讯
分布式关系型数据库有哪些?
数据分析型业务场景的国产化分布式多模数据库,能够一站式替代Hadoop+MPP混合架构,提供多模分析、实时数据处理、存算解耦、混合负载、数据联邦、异构服务器混合部署等先进技术能力,一站式满足数据测试、央行数据库标准测试等多项权威测试认证,入选了Gartner《中国数据库市场指南》、爱分析《中国分析型数据库市场研究报告》,并获得金猿奖“2021大数据产业创新服务产品”等多项荣誉。分布式关系型数据库有哪些?星环科技在基础软件产品领域积累多年,在大数据平台TDH的研发过程中积累了大量的SOL、PL/SOL、数据库优化器、分布式事务等基础技术和专利,相关的技术优势可以在关系数据库中再次落地,从而加速分布式数据库的研发效率。采用新一代的基于分布式计算的数据库技术,自主研发了分布式交易型数据库KunDB和分布式数据库ArgoDB。基于KunDB与ArgoDB的数据库解决方案,为企业核心业务数据库升级改造、核心分析系统建设、创新应用开发国产化替代等业务场景提供完备的能力支撑。TranswarpArgoDB-星环分布式数据库TranswarpArgoDB是星环科技自主研发的面向
猜你喜欢
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...