向量数据库 应用实例

星环分布式向量数据库
Transwarp Hippo是一款企业级云原生分布式向量数据库,支持存储,索引以及管理海量的向量数据集,能够高效的解决向量相似度检索以及高密度向量聚类等问题。Hippo具备高可用、高性能、易拓展等特点,支持多种向量搜索索引,支持数据分区分片、数据持久化、增量数据摄取、向量标量字段过滤混合查询等功能,能够很好的满足企业针对海量向量数据的高实时性检索等场景。

向量数据库 应用实例 更多内容

向量数据库是一种以高维向量形式存储数据数据库,高维向量是特征或属性的数学表示。每个向量都有一定的维数,根据数据的复杂程度和粒度,维数从几十到几千不等。向量通常是通过对原始数据(如文本、图像、音频、视频等)应用某种转换或嵌入函数生成的。嵌入函数可以基于多种方法,如机器学习模型、单词嵌入、特征提取算法等。矢量数据库的主要优势在于,它可以根据数据的矢量距离或相似度对数据进行快速、准确的相似性搜索和检索。这意味着,与其使用传统方法根据精确匹配或预定义标准查询数据库,您可以使用向量数据库根据语义或上下文含义查找相似或相关的数据。例如,您可以使用矢量数据库来:根据视觉内容和风格查找与给定图像相似的图像根据主题和情感查找与给定文档相似的文档根据产品的特征和评分,查找与给定产品相似的产品要在矢量数据库中执行相似性搜索和检索,需要使用一个代表所需信息或标准的查询矢量。查询向量可以来自与存储向量相同类型的数据(例如,使用图像作为图像数据库的查询),也可以来自不同类型的数据(例如,使用文本作为图像数据库的查询)。然后,需要使用一种相似度量来计算两个向量向量空间中的远近程度。相似性搜索和检索的结果通常是
向量向量数据库比较这些向量的接近度以找到接近的匹配项,并提供相关的搜索结果。向量数据库应用的一些示例包括:语义搜索:在搜索文本和文档时,传统的词法搜索只能进行精确匹配,而语义搜索则更注重与搜索查询等非结构化数据很难用传统数据库来描述。用户可以使用相似的对象和机器学习模型来查询向量数据库,以便更轻松地比较和找到相似的匹配项。重复数据删除和记录匹配:对于需要删除重复项或进行记录匹配的应用程序,向量考虑过的项目。异常检测:向量数据库可以找到与其他对象非常不同的异常值。对于IT运营、安全威胁评估和欺诈检测等领域,异常检测非常有价值。除了上述应用之外,向量数据库还具有以下关键功能:高性能和高扩展性和算法进行向量化和相似性匹配。实时更新:向量数据库可以实时更新索引和向量嵌入,以便及时反映数据的变化。向量数据库具有广泛的应用领域,包括语义搜索、非结构化数据的相似性搜索、重复数据删除和记录匹配、推荐相似度搜索或“向量搜索”是向量数据库常见的用例。向量搜索将索引中多个向量的接近程度与搜索查询或主题项进行比较。为了找到相似的匹配项,可以使用用于创建向量嵌入的相同机器学习嵌入模型,将主题项或查询转换
向量数据库在多个领域中得到了广泛应用。尤其在涉及大量向量数据存储、检索和分析的场景中,向量数据库应用广泛。以下是几个常见的向量数据库使用场景:相似性搜索向量数据库在处理相似性搜索时表现出色,特别是在找到与之相似的图片,这在图像搜索引擎和内容识别应用中尤为重要。自然语言处理:对于大量的文本数据向量数据库可以高效地进行相似性搜索,帮助找到相似的文本、句子或短语,为信息检索和文本分析提供便利。嵌入向量异常情况,为物联网应用提供实时分析功能。生物信息学在生物信息学领域,向量数据库为基因组学和药物发现等研究提供了强大的支持。基因组学:向量数据库可以存储和比对DNA或蛋白质序列,帮助科学家识别基因、编码投资策略,提高投资收益。语音和音乐处理在语音和音乐处理领域,向量数据库也发挥了重要作用。语音识别:通过检索相似的语音片段,向量数据库可以帮助提升语音识别的准确率,为语音搜索和语音识别应用提供支持。音乐特征、位置数据等地理空间向量数据向量数据库为地理信息系统提供了强大的数据支持。医疗诊断在医疗领域,向量数据库应用也日益广泛。特别是在影像分析方面,通过存储和比对医学图像的特征向量向量数据库可以帮助医生进行更准确的医学诊断。
可以获得更高的压缩比;而无损压缩则能够在保持数据完整性的前提下进行压缩。大规模数据集优化:在处理大规模数据集时,压缩技术显得尤为重要。通过合理地应用压缩算法,向量数据库可以显著减少存储空间的使用,降低存储成本。同时,压缩后的数据还可以提高数据传输和处理的效率,进一步提升整个系统的性能。向量数据库是专门用于高效地存储、查询和管理向量数据数据库。而向量存储,作为向量数据库的核心组成部分,其设计和优化直接影响到数据库的性能和效率。数据结构向量数据库在存储向量数据时,通常会采用特定的具有固定维度的向量集合。这些平面数据结构简单直观,但在处理大规模数据集时,可能会面临性能瓶颈。特定向量存储引擎:为了克服平面数据结构的局限性,一些向量数据库采用了特定的向量存储引擎。这些引擎针对向量和提高存储效率,一些向量数据库采用了压缩技术。压缩算法:这些算法通过消除数据中的冗余和重复信息,来减少向量数据的大小。常见的压缩算法包括有损压缩和无损压缩。有损压缩在压缩过程中会损失一定的精度,但通常数据结构。这些数据结构能够有效地组织和存储向量,以便于后续的查询和计算。平面数据结构:常见的平面数据结构包括数组和矩阵。数组是一种线性结构,适用于存储一系列有序的向量;而矩阵则是一种二维结构,适用于存储
行业资讯
向量数据库
相似性搜索功能,即快速找到与查询向量最相似的若干个向量。这在推荐系统、图像识别、自然语言处理等领域具有广泛的应用。工作原理向量数据库的工作原理主要包括数据存储、索引构建和相似性搜索三个过程:数据存储结构进行快速搜索,并返回与查询向量最相似的数据结果。相似性搜索的过程通常涉及到距离计算和相似度评估,数据库会利用预先构建的索引结构来加速这一过程,从而提供快速准确的搜索结果。应用场景向量数据库在许多领域都有广泛的应用。以下是一些典型的应用案例:人脸识别:通过将人脸图像表示为向量,在向量数据库中进行相似性搜索,实现快速的人脸识别。向量数据库能够快速找到与待识别人脸最相似的人脸数据,从而提供准确的识别向量数据库向量数据库是一种专门用于存储和查询高维向量数据数据库系统。它通过特定的索引结构和优化算法,使得高维向量的存储、管理和检索变得更加高效。向量数据库不仅支持大规模向量数据的存储,还提供高效的:向量数据被存储在数据库中,并按照一定的数据模型进行组织。通常情况下,向量数据可以通过向量化技术将其转换为数值向量、文本向量或图像向量等形式。索引构建:针对向量数据数据库会构建索引结构,以加快相似性
向量数据库是专门用来存储和查询向量数据库向量数据库基于向量相似性搜索,可以处理更多非结构化数据,比如图像和音频。在机器学习和深度学习中,数据通常以向量形式表示,因此向量数据库被广泛应用于这些领域场景支持:星环分布式向量数据库Hippo供标准的Python、Restful、CPP、JavaAPI等接口,可轻松对接各类应用和模型,提高应用开发和调用的效率。同时,提供类SQL接口,满足入库等特定。向量数据库哪个好?星环科技分布式向量数据库TranswarpHippo星环分布式向量数据库Hippo作为一款企业级云原生分布式向量数据库,基于分布式特性,可以对文档、图片、音视频等多源、海量数据转化后的多维向量进行统一存储和管理。通过多进程架构与GPU加速技术,充分发挥并行检索能力,实现毫秒级高性能数据检索,结合相似度检索等技术,帮助用户快速挖掘数据价值。与开源的向量数据库不同,星环分布式向量数据库Hippo具备高可用、高性能、易拓展等特点,支持多种向量搜索索引,支持数据分区分片、数据持久化、增量数据摄取、向量标量字段过滤混合查询等功能,很好地满足了企业针对海量向量数据的高实时性检索等场景
行业资讯
向量数据库
、个人习惯等海量信息向量存储在星环分布式向量数据库Hippo中,可以极大地拓展大模型的应用边界,让大模型保持信息实时性,并能够动态调整,使大模型拥有“长期记忆”。此外,通过星环分布式向量数据库Hippo对向量数据进行存储,有效解除大模型对输入的限制,并且大模型在安全机制下访问向量数据库中的隐私数据,可以充分保证数据安全,杜绝隐私泄露风险。同时星环科技还将分布式向量数据库Hippo和分布式图数据库StellarDB结合,并以此作为微调的数据凭依,可以更低成本、更高效地构建特定领域的大模型应用。星环分布式向量数据库Hippo作为一款企业级云原生分布式向量数据库,基于分布式特性,可以对文档、图片、音视频等多源、海量数据转化后的多维向量进行统一存储和管理。通过多进程架构与GPU加速技术,充分发挥并行检索能力,实现毫秒级高性能数据检索,结合相似度检索等技术,帮助用户快速挖掘数据价值。优势特点:与开源的向量数据库不同,星环分布式向量数据库Hippo具备高可用、高性能、易拓展等特点,支持多种向量搜索索引,支持数据分区分片、数据持久化、增量数据摄取、向量标量字段过滤混合查询等功能,很好地满足了企业针对海量向量数据的高实时性检索等场景。云原生技术,支持弹性扩缩容。星环分布式向量数据库Hippo
向量数据库是一种专门用于存储和管理高维向量数据库系统。随着深度学习和大数据技术的不断发展,向量数据库逐渐成为了一种重要的数据处理工具,尤其在推荐系统、搜索引擎、图像识别等领域中得到了广泛应用向量应用场景越来越广泛。例如,在推荐系统中,通过将用户行为和物品特征转化为高维向量向量数据库可以高效地实现用户和物品的相似度匹配,从而为用户推荐更加精准的物品。在搜索引擎中,向量数据库可以用于实现语义数据库通过将高维向量进行近似相似度比较,能够高效地处理大规模的向量数据。相比传统的关系型数据库向量数据库能够更好地支持向量数据的查询和检索,并能够提供更加丰富的数据分析功能。在大模型时代,向量数据库搜索和图像识别等功能,提高搜索的准确性和效率。星环分布式向量数据库-TranswarpHippo星环分布式向量数据库Hippo作为一款企业级云原生分布式向量数据库,基于分布式特性,可以对文档、图片数据库不同,星环分布式向量数据库Hippo具备高可用、高性能、易拓展等特点,支持多种向量搜索索引,支持数据分区分片、数据持久化、增量数据摄取、向量标量字段过滤混合查询等功能,很好地满足了企业针对海量向量数据的高实时性检索等场景。
行业资讯
向量数据库
搜索大型非结构化数据集。这些向量是通过对原始数据应用某种转换或嵌入函数来生成的。嵌入函数可以基于各种方法,如机器学习模型、词嵌入、特征提取算法等。在向量数据库中搜索使用相似性指标和索引。相似性指标向量数据库是一种新型的数据库架构,它使用向量表示法来存储和检索数据。这些向量是由深度学习模型生成的,可以简化处理多结构化内容的方式。与传统的关系型数据库不同,向量数据库设计为多语言和多模态,可以在同一向量空间内处理任何形式的自然语言和非结构化数据,如图像、视频、音频、文本等。这意味着,无论数据的形式如何,都可以使用相同的向量表示法进行处理。向量数据库通过处理深度学习模型的嵌入式向量来存储、索引和定义了数据库如何评估两个向量之间的距离和差值。常用的相似性度量是欧几里得距离,也称为L2范数。此外,索引也在加快查询速度和处理并发性方面发挥着关键作用。与传统的基于文本的数据库相比,向量数据库的主要优点是允许根据向量距离或相似性快速准确地搜索和检索数据。这意味着,用户可以使用向量数据库根据语义或上下文含义查找相似或相关的数据,而不是使用基于完全匹配或预定义条件查询数据库的传统方法。这种基于相似性的搜索方法可以更好地处理语义层面的查询,而不仅仅是基于关键词的匹配。
通过beeline或JDBC时,设置参数configquery.langcypher;将查询语言切换为TEoC模式。根据使用场景选择查询模式(默认为immediate模式)immediate模式通常用于并发及短查询场景,查询结果和中间结果通常不超过百万。通过configcrux.execution.modeimmediate;切换。analysis模式通常用于分析场景,创建图、插入数据以及图算法相关的语句必须在该模式下进行。通过configcrux.execution.modeanalysis;切换。
本章节的示例语句均可在示例图my_graph中执行,执行前请先创建示例图my_graph,建图语句如下:creategraphmy_graphwithschema(:Boy{namestring,salarydouble,ageint,singleboolean,birthdaylocaldatetime,reservelong,ratedecimal(38,10),hobbysarray<string>,geoPointgeo<double>})(:Girl{namestring,salarydouble,ageint,singleboolean,birthdaylocaldatetime,reservelong,ratedecimal(38,10),hobbysarray<string>,geoPointgeo<double>})[:Friend{sinceint}][:Likes{sinceint}]graphproperties:{`graph.shard.number`:3,`graph.replication.number`:...
产品文档
6.1 图计算
StellarDB5.0.1版本对图算法场景进行了大规模改进和提升,内置算法性能得到较大提升。在语法方面,StellarDB5.0.1的内置图算法对于返回的节点,会直接以节点类型返回。因此可以直接使用uid(vertex)访问节点的uid,而不再需要node_rk_to_uid函数进行uid的转换。可以参考PageRank等函数。另外,对于图算法返回的节点,我们也可以灵活的访问其其他属性作为返回值。图计算简介StellarDB的图计算使用TEoC语句调用相应图算法。算法的输入数据为图的点、边数据。当前版本中图计算支持结果返回、结果导出和结果写回。在使用图算法时,使用configcrux.execution.modeanalysis;语句切换到分析模式下使用图算法语句。图数据视图StellarDB支持创建一个可被持久化的视图,用于加速图算法执行过程。创建视图创建视图的语法如下所示:createquerytemporarygraphviewGRAPH_VIEW_NAMEas(v)[e]withGRAPH_ALGO(@GRAPH_VIEW_NAME,VIEW_STORE_PATH,CONFI...
产品文档
5.10 表达式
类型表达式类型例子十进制型整数10,-213十进制小数1.25,3.604E-14,-2.31十进制型长整数199345843592l,-12381543923L任意精度的有符号十进制数123bd,123.31BD八进制整数(0开头)084,-096字符串"星环",'信息科技'布尔类型true,false,TRUE,FALSE数组类型[1,2,3],["星环","信息科技"],[decimal(10.2,3,1),decimal(100.2,3,2)],[localdatetime("2021-01-18T09:50:12.627"),localdatetime("2021-11-18T03:50:12.113")]时间类型localdatetime("2021-01-18T09:50:12.627")Decimal类型decimal(10.2,3,1)地理空间类型point(20.5,30.5),point(-20.5,-30.5)时序类型{localdatetime("2023-01-01T15:16:17")::"nice"},{localdatetime("1997-01-01...
产品文档
3 安装 StellarDB
3.1在TDH平台安装StellarDB3.2StellarDB安装校验3.3StellarDB低版本升级至StellarDB5.0.1
为什么引入动态图模型?在实际应用过程中很容易可以发现,图数据在很多图数据的应用场景中并不是静态不变的,而是动态演进的,这些场景中包括例如金融反欺诈场景中金融交易网络随着时间的推进而发生的交易变化、交易社群变化等;又比如社交网络中新增用户、用户关注或者取消关注、更改账户信息等。将图数据变化的历史记录下来,不仅可以用于历史数据规律的总结,还可以利用动态图数据进行动态图神经网络相关技术的研究,从而进一步挖掘数据中潜在的数据价值和更加灵活高效的业务场景,譬如预测某一个时刻某一事件是否会发生。动态图模型的动态变化图数据的动态变化主要分为两类,一类是节点或边的属性的值的变化;另一类变化是子图(结构)的变化,如新增/删除点边。这两种图数据的动态变化可以单独发生,也可以同时发生。从图数据的属性变化角度来看,StellarDB5.0.1动态图模型可以记录图中节点或者边属性的所有历史版本(而非新数据覆盖旧数据)。在实际数据开发使用中,还可以结合诸如柱状图、趋势图等对历史数据进行可视化,更加直观、更加适合业务使用。从图数据的子图(结构)的角度来看,StellarDB5.0.1动态图模型还可以返回不同时间子图...
索引是数据库中某些数据的冗余副本,目的是使查询性能更优。作为代价,数据库需要额外存储空间和较慢写入速度,因此决定哪些字段需要索引是一项重要且不易的任务。(新)StellarDB5.0.1版本不再对旧版本使用的manipulatecreate_index和manipulatedelete_index语法进行支持,在新版本中统一使用createindex和dropindex进行索引的创建和删除新增索引CREATEINDEX[IFNOTEXISTS]FOR(LabelName)ON[f1,f2,...];CREATEINDEX[IFNOTEXISTS]FOR[LabelName]ON[f1,f2,...];不支持对TIME_SERIES类型的属性创建索引默认情况下,对同一个Label的某个属性多次创建索引会报错;但如果带有IFNOTEXISTS,则不会抛出任何错误包裹点边LabelName的括号不同,注意区分示例1.在点labelperson的属性name和age上建立索引CREATEINDEXIFNOTEXISTSFOR(person)ON[name,age];示例2.在边labelask...
产品文档
5.12 变量声明
声明简介声明是指为特定数据类型的变量分配一定的存储空间,并命名该变量以便引用它;必须先声明变量,然后才能引用它;对声明的变量可以进行赋值操作来改变它的值;声明的变量其作用域是Session级别的。变量声明使用decl关键字声明一个变量必须为变量指定名称和类型,且名称不能与已有的变量名相同。声明但未赋值的变量的默认值为null。变量名声明对大小写敏感。变量声明的语句遵循如下格式:DECL[<variable_name>:<variable_type>];使用方法示例如下表所示:语句说明declx:int;声明一个类型为int的变量xdecls:string;声明一个类型为string的变量sdecll:long;声明一个类型为long的变量ldeclb:boolean;声明一个类型为boolean的变量bdecld:double;声明一个类型为double的变量ddecltime:localdatetime;声明一个类型为localdatetime的变量timedecld1:decimal;声明一个类型为decimal的变量d1decllist1:list[int...
产品文档
7.1 自定义函数
StellarDB支持用户添加自定义函数,添加后可在cypher语句中使用。自定义函数实现自定义函数通过java/scala语言开发,可继承实现两种基类,编译成jar包,通过指定命令加载到StellarDB。需要实现的基类为如下两种,可自行选择继承合适的基类:继承UDF基类继承GenericUDF基类。继承UDF基类该类实现简单,功能较为单一。支持Quark的基本类型、数组和Map。适合实现简单的逻辑。继承org.apache.hadoop.hive.ql.exec.UDF类继承UDF类必须实现evaluate方法且返回值类型不能为void,支持定义多个evaluate方法不同参数列表用于处理不同类型数据。@Description(name="my_plus",value="my_plus()-ifstring,doconcat;ifinteger,doplus",extended="Example:\n>selectmy_plus('a','b');\n>ab\n>selectmy_plus(3,5);\n>8")/***实现UDF函数,若字符串执行拼接,in...
产品文档
4 快速入门
快速上手本章节将引导您快速熟悉StellarDB,并为您初步介绍如何通过KGExplorer和beeline客户端操作StellarDB。其中,"StellarDB初探"一节通过构建一张人物关系图,从零介绍如何在StellarDB进行基本操作;"StellarDB进阶"一节为您提供了内置于StellarDB的《哈利·波特》人物关系图,帮助您进一步探索StellarDB。StellarDB初探使用KGExplorer构建图从Manager页面进入KGExplorer页面。若KGExplorer开启了单点登录,会自动跳转Federation登录页面,按如图方式登录:KGExplorer用戶开启方法以及详细使用说明请查看章节《KGExplorer使用文档》。点击登录后进入KGExplorer主页面。我们首先需要构建图名为"hello_world"的图。在主页面右上角点击创建图按钮开始图谱schema的构建。按照引导填写图基本信息后点击确定进入构建页面。在画布中,我们为"hello_world"图创建Boy和Girl两种类型的点,两种类型的点均包含name、salary、age、single四...