向量数据库 推荐

星环分布式向量数据库
Transwarp Hippo是一款企业级云原生分布式向量数据库,支持存储,索引以及管理海量的向量数据集,能够高效的解决向量相似度检索以及高密度向量聚类等问题。Hippo具备高可用、高性能、易拓展等特点,支持多种向量搜索索引,支持数据分区分片、数据持久化、增量数据摄取、向量标量字段过滤混合查询等功能,能够很好的满足企业针对海量向量数据的高实时性检索等场景。

向量数据库 推荐 更多内容

向量数据库的应用场景非常广泛,其中一些典型的场景包括以下几个方面:图像搜索和识别:通过对图像中的特征向量进行存储和索引,可以实现高效的图像搜索和识别。这个应用场景在电商、游戏和社交媒体等领域都非常用户的问题。金融风控分析:通过对客户历史交易记录等数据进行向量化,并存储、索引和比对,可以实现客户风险预测和投资建议等应用。向量数据库可以应用在多种场景中,它的应用能力正在不断拓展和加强。星环科技向量数据库-TranswarpHippoTranswarpHippo是一款企业级云原生分布式向量数据库,支持存储,索引以及管理海量的向量数据集,能够高效的解决向量相似度检索以及高密度向量聚类等问题普遍。智能语音识别:通过将语音信号转化为向量形式,并与预计特征向量进行比对,从而实现智能的语音识别。智能家居、智能客服和智能语音助手等场景中应用广泛。推荐系统:通过对用户行为或者产品特征进行向量表示,并对这些向量进行存储、索引和比对,可以更加准确地实现内容推荐、广告投放和舆情监控等应用。智能客服:通过将问题向量化,并将其与机器预存储的问题库进行比对,可以实现更加准确的自助解决方案推荐和快速响应
向量数据库作为一种新型的数据存储和检索工具,已经在多个领域中展现了其独特的价值。尽管在大语言模型(LLM)引起广泛关注之前,向量数据库就已经存在,但它的应用范围和影响力正在不断扩大。从推荐系统,到问答应用,向量数据库正逐渐改变我们与数据的交互方式。推荐系统是向量数据库为广泛的应用领域之一。在这个场景下,向量数据库通过计算向量之间的相似度,能够快速找到与给定查询相似的对象。例如,在电商平台上,当用户浏览或搜索某个商品时,系统可以利用向量数据库,根据用户的浏览历史和购买记录,快速推荐出与之相似的其他商品。这种基于向量推荐算法,不仅能够提高推荐的准确性,还能大大提升用户体验,促进商品的销售。除了推荐系统,向量数据库在图像识别领域也有着广泛的应用。在图像处理中,每张图片都可以被转换为一个高维向量。通过将这些向量存储在向量数据库中,我们可以实现高效的图像检索和匹配。这在许多场景中都非常有用,比如安防监控、人脸识别、医学影像分析等。在这些应用中,向量数据库能够快速识别出与目标图像相似的其他图像,为相关应用提供强大的技术支持。随着大语言模型(LLM)的兴起,向量数据库又多了一个新的应用
行业资讯
向量数据库
相似性搜索功能,即快速找到与查询向量最相似的若干个向量。这在推荐系统、图像识别、自然语言处理等领域具有广泛的应用。工作原理向量数据库的工作原理主要包括数据存储、索引构建和相似性搜索三个过程:数据存储结果。推荐系统:基于用户行为、偏好生成的向量,找出最符合用户兴趣的内容推荐。图像搜索引擎:用户上传一张图片,系统通过向量数据库找到最相似的图片集合。语音识别与检索:将语音转录并编码为向量,用于快速识别或查找相似语音片段。文本相似度分析:新闻文章、社交媒体帖子的语义相似度分析,用于内容去重、情感分析等。向量数据库向量数据库是一种专门用于存储和查询高维向量数据数据库系统。它通过特定的索引结构和优化算法,使得高维向量的存储、管理和检索变得更加高效。向量数据库不仅支持大规模向量数据的存储,还提供高效的:向量数据被存储在数据库中,并按照一定的数据模型进行组织。通常情况下,向量数据可以通过向量化技术将其转换为数值向量、文本向量或图像向量等形式。索引构建:针对向量数据数据库会构建索引结构,以加快相似性搜索的速度。常见的索引结构包括KD树、球树和LSH(局部敏感哈希)等。这些索引结构能够将向量数据组织成树状或哈希表的形式,从而提高相似性搜索的效率。相似性搜索:当用户发起相似性查询时,数据库会通过索引
、语音识别、视频指纹等多类AI场景。个性化推荐:星环分布式向量数据库Hippo可与各类深度学习平台搭建的模型进行耦合,通过向量相似度检索,可以对用户行为与喜好等多方面进行分析、挖掘,做到千人千面的推荐效果。智能搜索,智能问答:知识图谱的目的在于将结构化数据、非结构化数据以及这些数据、实体之间的关联关系进行存储和表达。通过星环分布式向量数据库Hippo可以将这些信息更好地进行表达和处理,给出符合需求的一系列近似答案和推荐查询。向量数据库是专门用来存储和查询向量数据库向量数据库基于向量相似性搜索,可以处理更多非结构化数据,比如图像和音频。在机器学习和深度学习中,数据通常以向量形式表示,因此向量数据库被广泛应用于这些领域。向量数据库哪个好?星环科技分布式向量数据库TranswarpHippo星环分布式向量数据库Hippo作为一款企业级云原生分布式向量数据库,基于分布式特性,可以对文档、图片、音视频等多源、海量数据转化后的多维向量进行统一存储和管理。通过多进程架构与GPU加速技术,充分发挥并行检索能力,实现毫秒级高性能数据检索,结合相似度检索等技术,帮助用户快速挖掘数据价值。与开源的向量数据库不同,星环分布式向量
。个性化推荐星环分布式向量数据库Hippo可与各类深度学习平台搭建的模型进行耦合,通过向量相似度检索,可以对用户行为与喜好等多方面进行分析、挖掘,做到千人千面的推荐效果。智能搜索,智能问答知识图谱的目的在于将结构化数据、非结构化数据以及这些数据、实体之间的关联关系进行存储和表达。通过星环分布式向量数据库Hippo可以将这些信息更好地进行表达和处理,给出符合需求的一系列近似答案和推荐查询。星环科技分布式向量数据库TranswarpHippo星环分布式向量数据库Hippo作为一款企业级云原生分布式向量数据库,基于分布式特性,可以对文档、图片、音视频等多源、海量数据转化后的多维向量进行统一存储和管理。通过多进程架构与GPU加速技术,充分发挥并行检索能力,实现毫秒级高性能数据检索,结合相似度检索等技术,帮助用户快速挖掘数据价值。与开源的向量数据库不同,星环分布式向量数据库Hippo具备弹性扩缩容星环分布式向量数据库Hippo采用全面容器化部署,支持服务的弹性扩缩容,同时具备多租户和强大的资源管控能力。高扩展性,海量向量数据存储与直接利用各类算法lib不同,星环Hippo存储和计算
。通过应用向量检索算法,量搜索数据库可以快速检索和匹配目标向量,不仅可以于向量相似度检索,还可以支持分类、聚类和推荐等应用场景。现在大型机构和企业广泛应用向量搜索数据库来挖掘和应用对企业有价值的数据信息,比如金融行业的推荐和欺诈检测,社交网络领域的知识图谱与舆情应用等等。星环科技分布式向量数据库TranswarpHippo星环科技分布式向量数据库TranswarpHippo作为一款企业级云原生向量搜索数据库是一种以向量为基础存储单元,具备高效检索向量能力的数据库向量搜索数据库大多数适用于海量高维向量数据的存储和检索,对于传统关系型数据库无法胜任或效率较低的高维向量场景有较好的解决效果分布式向量数据库,支持存储、索引以及管理海量的向量数据集,提供向量相似度检索、高密度向量聚类等能力,有效地解决了大模型在知识时效性低、输入能力有限、准确度低等问题,让大模型更高效率地存储和读取知识,降低训练和推理成本,激发更多的AI应用场景。在赋予大模型拥有“长期记忆”的同时,还可以协助企业解决目前担忧的大模型数据隐私泄露问题。与开源的向量数据库不同,星环分布式向量数据库Hippo具备高可用、高性能
相似度检索。快速的查询性能低延迟查询:在处理大规模向量数据的相似性搜索和近邻查询时,能够在极短的时间内返回结果,对于需要实时响应的应用场景,如实时推荐系统、在线图像识别等,高性能向量数据库可以满足低延迟高性能向量数据库是一种专门针对向量数据进行高效存储、快速检索和灵活管理的数据库系统,具有以下特点:高效的数据存储与索引存储结构优化:采用专门设计的数据结构来存储高维向量数据,减少数据冗余,提高存储计算指标,如欧氏距离、内积、余弦相似度等,以满足不同应用场景对相似度度量的需求。简单的集成接口:通常提供简单易用的API或查询语言,方便与其他系统和应用程序进行集成,降低了开发人员的使用门槛,使开发者能够快速将向量数据库集成到自己的项目中。支持:除了基本的向量相似性搜索外,还支持结合标量数据进行多维度的查询,例如在推荐系统中,可以同时根据用户的向量特征和其他结构化属性进行综合查询,以实现更精准的推荐。多种相似度度量:提供多种常用的相似度效率,能够有效利用存储空间,支持大规模向量数据的存储。强大的索引机制:内置多种先进的向量索引算法,这些索引算法可以显著加速向量的相似性搜索过程,大大减少查询时需要遍历的数据量,从而实现快速的近邻查询和
向量数据库是一种专门用于存储和管理高维向量数据库系统。随着深度学习和大数据技术的不断发展,向量数据库逐渐成为了一种重要的数据处理工具,尤其在推荐系统、搜索引擎、图像识别等领域中得到了广泛应用。向量的应用场景越来越广泛。例如,在推荐系统中,通过将用户行为和物品特征转化为高维向量向量数据库可以高效地实现用户和物品的相似度匹配,从而为用户推荐更加精准的物品。在搜索引擎中,向量数据库可以用于实现语义数据库通过将高维向量进行近似相似度比较,能够高效地处理大规模的向量数据。相比传统的关系型数据库向量数据库能够更好地支持向量数据的查询和检索,并能够提供更加丰富的数据分析功能。在大模型时代,向量数据库搜索和图像识别等功能,提高搜索的准确性和效率。星环分布式向量数据库-TranswarpHippo星环分布式向量数据库Hippo作为一款企业级云原生分布式向量数据库,基于分布式特性,可以对文档、图片数据库不同,星环分布式向量数据库Hippo具备高可用、高性能、易拓展等特点,支持多种向量搜索索引,支持数据分区分片、数据持久化、增量数据摄取、向量标量字段过滤混合查询等功能,很好地满足了企业针对海量向量数据的高实时性检索等场景。
可用性。这种高扩展性使得分布式向量数据库能够适应不断变化的业务需求,为企业的发展提供有力支持。实时读写:在许多应用场景中,如实时推荐系统、实时监控等,需要对数据进行实时的读写操作。分布式向量数据库具备防监控领域,警方可以通过输入嫌疑人的照片,利用向量数据库在监控视频图像中快速检索出嫌疑人的行踪轨迹,大大提高了办案效率。推荐系统:向量数据库推荐系统中也发挥着重要作用。例如,音乐平台可以根据用户的音乐偏好向量,在音乐向量数据库中找到与之相似的音乐向量,从而为用户推荐他们可能喜欢的音乐。视频平台则可以根据用户的观看历史和行为向量,为用户推荐符合其兴趣的视频内容,提升用户的观看体验和平台的用户粘性解锁分布式向量数据库:大模型时代的数据新引擎向量数据库:AI时代的新宠在当今数字化的时代,数据犹如一座蕴藏着无尽价值的宝藏,而数据库则是开启这座宝藏的关键钥匙。随着人工智能技术的飞速发展,特别是大模型的兴起,一种新型的数据库——向量数据库,正逐渐崭露头角,成为了AI时代不可或缺的重要工具。大模型的出现,让人工智能的发展进入了一个全新的阶段。它们能够处理海量的数据,进行复杂的自然语言处理、图像识别
通过beeline或JDBC时,设置参数configquery.langcypher;将查询语言切换为TEoC模式。根据使用场景选择查询模式(默认为immediate模式)immediate模式通常用于并发及短查询场景,查询结果和中间结果通常不超过百万。通过configcrux.execution.modeimmediate;切换。analysis模式通常用于分析场景,创建图、插入数据以及图算法相关的语句必须在该模式下进行。通过configcrux.execution.modeanalysis;切换。
产品文档
5.12 变量声明
声明简介声明是指为特定数据类型的变量分配一定的存储空间,并命名该变量以便引用它;必须先声明变量,然后才能引用它;对声明的变量可以进行赋值操作来改变它的值;声明的变量其作用域是Session级别的。变量声明使用decl关键字声明一个变量必须为变量指定名称和类型,且名称不能与已有的变量名相同。声明但未赋值的变量的默认值为null。变量名声明对大小写敏感。变量声明的语句遵循如下格式:DECL[<variable_name>:<variable_type>];使用方法示例如下表所示:语句说明declx:int;声明一个类型为int的变量xdecls:string;声明一个类型为string的变量sdecll:long;声明一个类型为long的变量ldeclb:boolean;声明一个类型为boolean的变量bdecld:double;声明一个类型为double的变量ddecltime:localdatetime;声明一个类型为localdatetime的变量timedecld1:decimal;声明一个类型为decimal的变量d1decllist1:list[int...
本章节的示例语句均可在示例图my_graph中执行,执行前请先创建示例图my_graph,建图语句如下:creategraphmy_graphwithschema(:Boy{namestring,salarydouble,ageint,singleboolean,birthdaylocaldatetime,reservelong,ratedecimal(38,10),hobbysarray<string>,geoPointgeo<double>})(:Girl{namestring,salarydouble,ageint,singleboolean,birthdaylocaldatetime,reservelong,ratedecimal(38,10),hobbysarray<string>,geoPointgeo<double>})[:Friend{sinceint}][:Likes{sinceint}]graphproperties:{`graph.shard.number`:3,`graph.replication.number`:...
产品文档
4 快速入门
快速上手本章节将引导您快速熟悉StellarDB,并为您初步介绍如何通过KGExplorer和beeline客户端操作StellarDB。其中,"StellarDB初探"一节通过构建一张人物关系图,从零介绍如何在StellarDB进行基本操作;"StellarDB进阶"一节为您提供了内置于StellarDB的《哈利·波特》人物关系图,帮助您进一步探索StellarDB。StellarDB初探使用KGExplorer构建图从Manager页面进入KGExplorer页面。若KGExplorer开启了单点登录,会自动跳转Federation登录页面,按如图方式登录:KGExplorer用戶开启方法以及详细使用说明请查看章节《KGExplorer使用文档》。点击登录后进入KGExplorer主页面。我们首先需要构建图名为"hello_world"的图。在主页面右上角点击创建图按钮开始图谱schema的构建。按照引导填写图基本信息后点击确定进入构建页面。在画布中,我们为"hello_world"图创建Boy和Girl两种类型的点,两种类型的点均包含name、salary、age、single四...
产品文档
5.10 表达式
类型表达式类型例子十进制型整数10,-213十进制小数1.25,3.604E-14,-2.31十进制型长整数199345843592l,-12381543923L任意精度的有符号十进制数123bd,123.31BD八进制整数(0开头)084,-096字符串"星环",'信息科技'布尔类型true,false,TRUE,FALSE数组类型[1,2,3],["星环","信息科技"],[decimal(10.2,3,1),decimal(100.2,3,2)],[localdatetime("2021-01-18T09:50:12.627"),localdatetime("2021-11-18T03:50:12.113")]时间类型localdatetime("2021-01-18T09:50:12.627")Decimal类型decimal(10.2,3,1)地理空间类型point(20.5,30.5),point(-20.5,-30.5)时序类型{localdatetime("2023-01-01T15:16:17")::"nice"},{localdatetime("1997-01-01...
产品文档
7.1 自定义函数
StellarDB支持用户添加自定义函数,添加后可在cypher语句中使用。自定义函数实现自定义函数通过java/scala语言开发,可继承实现两种基类,编译成jar包,通过指定命令加载到StellarDB。需要实现的基类为如下两种,可自行选择继承合适的基类:继承UDF基类继承GenericUDF基类。继承UDF基类该类实现简单,功能较为单一。支持Quark的基本类型、数组和Map。适合实现简单的逻辑。继承org.apache.hadoop.hive.ql.exec.UDF类继承UDF类必须实现evaluate方法且返回值类型不能为void,支持定义多个evaluate方法不同参数列表用于处理不同类型数据。@Description(name="my_plus",value="my_plus()-ifstring,doconcat;ifinteger,doplus",extended="Example:\n>selectmy_plus('a','b');\n>ab\n>selectmy_plus(3,5);\n>8")/***实现UDF函数,若字符串执行拼接,in...
为什么引入动态图模型?在实际应用过程中很容易可以发现,图数据在很多图数据的应用场景中并不是静态不变的,而是动态演进的,这些场景中包括例如金融反欺诈场景中金融交易网络随着时间的推进而发生的交易变化、交易社群变化等;又比如社交网络中新增用户、用户关注或者取消关注、更改账户信息等。将图数据变化的历史记录下来,不仅可以用于历史数据规律的总结,还可以利用动态图数据进行动态图神经网络相关技术的研究,从而进一步挖掘数据中潜在的数据价值和更加灵活高效的业务场景,譬如预测某一个时刻某一事件是否会发生。动态图模型的动态变化图数据的动态变化主要分为两类,一类是节点或边的属性的值的变化;另一类变化是子图(结构)的变化,如新增/删除点边。这两种图数据的动态变化可以单独发生,也可以同时发生。从图数据的属性变化角度来看,StellarDB5.0.1动态图模型可以记录图中节点或者边属性的所有历史版本(而非新数据覆盖旧数据)。在实际数据开发使用中,还可以结合诸如柱状图、趋势图等对历史数据进行可视化,更加直观、更加适合业务使用。从图数据的子图(结构)的角度来看,StellarDB5.0.1动态图模型还可以返回不同时间子图...
产品文档
3 安装 StellarDB
3.1在TDH平台安装StellarDB3.2StellarDB安装校验3.3StellarDB低版本升级至StellarDB5.0.1
索引是数据库中某些数据的冗余副本,目的是使查询性能更优。作为代价,数据库需要额外存储空间和较慢写入速度,因此决定哪些字段需要索引是一项重要且不易的任务。(新)StellarDB5.0.1版本不再对旧版本使用的manipulatecreate_index和manipulatedelete_index语法进行支持,在新版本中统一使用createindex和dropindex进行索引的创建和删除新增索引CREATEINDEX[IFNOTEXISTS]FOR(LabelName)ON[f1,f2,...];CREATEINDEX[IFNOTEXISTS]FOR[LabelName]ON[f1,f2,...];不支持对TIME_SERIES类型的属性创建索引默认情况下,对同一个Label的某个属性多次创建索引会报错;但如果带有IFNOTEXISTS,则不会抛出任何错误包裹点边LabelName的括号不同,注意区分示例1.在点labelperson的属性name和age上建立索引CREATEINDEXIFNOTEXISTSFOR(person)ON[name,age];示例2.在边labelask...
产品文档
6.1 图计算
StellarDB5.0.1版本对图算法场景进行了大规模改进和提升,内置算法性能得到较大提升。在语法方面,StellarDB5.0.1的内置图算法对于返回的节点,会直接以节点类型返回。因此可以直接使用uid(vertex)访问节点的uid,而不再需要node_rk_to_uid函数进行uid的转换。可以参考PageRank等函数。另外,对于图算法返回的节点,我们也可以灵活的访问其其他属性作为返回值。图计算简介StellarDB的图计算使用TEoC语句调用相应图算法。算法的输入数据为图的点、边数据。当前版本中图计算支持结果返回、结果导出和结果写回。在使用图算法时,使用configcrux.execution.modeanalysis;语句切换到分析模式下使用图算法语句。图数据视图StellarDB支持创建一个可被持久化的视图,用于加速图算法执行过程。创建视图创建视图的语法如下所示:createquerytemporarygraphviewGRAPH_VIEW_NAMEas(v)[e]withGRAPH_ALGO(@GRAPH_VIEW_NAME,VIEW_STORE_PATH,CONFI...