国内多模态数据库 公司

星环分布式数据库
星环分布式数据库(Transwarp ArgoDB)是星环科技自主研发的分布式数据库,可以替代Hadoop+MPP混合架构。支持标准SQL语法,提供实时数据处理、存算解耦、混合负载、数据联邦、异构服务器混合部署等领先技术能力。通过一个ArgoDB数据库,就可以满足数据仓库、实时数据仓库、数据集市、OLAP、AETP、联邦计算等各种需求。降低平台复杂性和IT总拥有成本的同时,提升业务响应速度。

国内多模态数据库 公司 更多内容

模态数据存储指的是存储同时包含种类型数据的系统。模态数据可以包含文字、图像、音频、视频等多种形式的信息。在模态数据存储中,需要考虑如何有效地存储和访问这些不同类型的数据数据库ArgoDB“一多用“TranswarpArgoDB是星环科技自主研发的分布式数据库,基于模型统一架构支持关系型存储,宽表存储、搜索引擎、事件存储、图存储、键值存储、时序数据存储等10种数据模型,模态分析、联邦计算、数据仓库、实时数仓、湖仓集一体等场景。2019年8月,ArgoDB成为全球第四个通过TPC-DS基准测试并经过TPC官方审计的数据库产品。在架构上,模态数据库ArgoDB基于存算解耦,实现了模态数据库的“四个统一”:统一的SQL编译引擎,支持SQL99/2003标准语法,兼容TD,Oracle,DB2等多种方言,对不同模式的数据提供统一接口,将多个操作访问入口变为一个入口,将多种数据库数据库ArgoDB满足多种数据模型处理场景和复杂业务需求。ArgoDB提供模分析、实时数据处理、存算解耦、混合负载、数据联邦、异构服务器混合部署等先进技术能力,一站式满足OLAP、AETP、模型融合
行业资讯
模态数据库
存储管理,对使用者屏蔽不同数据源的数据存储,降低业务数据管理难度。通过ArgoDB一体化数据库架构实现全数据,全场景,全融合,大限度降低企业TCO,打造面向数据模态融合扩展的湖仓集一体化平台。此外,基于ArgoDB打造的湖仓集一体方案可以无缝衔接AI技术,帮助业务挖掘更多数据价值。各种类型的数据进行集中存储、查询和处理,满足对结构化、半结构化和非结构化数据的统一管理需求。TranswarpArgoDB是星环科技自主研发的分布式数据库,基于模型统一架构支持关系型存储,宽表存储先进技术能力,一站式满足OLAP、AETP、模型融合分析、联邦计算、数据仓库、实时数仓、湖仓集一体等场景。2019年8月,ArgoDB成为全球第四个通过TPC-DS基准测试并经过TPC官方审计的数据库产品。在架构上,ArgoDB基于存算解耦,实现了数据库的“四个统一”:统一的SQL编译引擎,支持SQL99/2003标准语法,兼容TD,Oracle,DB2等多种方言,对不同模式的数据提供统一接口,将多个操作访问入口变为一个入口,将多种数据库语言变为一种语言,降低开发和迁移成本,简化用户操作。统一的计算引擎,将套计算引擎变为一套引擎,将份计算资源变为一份资源,提供高性能的分析计算和执行效率
行业资讯
模态大模型
模态大模型指的是将本、图像、视频、音频等模态信息联合起来进行训练和处理的深度学习模型。通过对这些不同媒介数据进行联合分析,该模型可以提高数据的处理和分析效率,从而获得更加准确和全面的信息。模态数据类型,大幅提高成果的精度和准确性。例如,可以将多种媒介数据组合在一起,以形成更加可视化的结果。这样就使得我们能够更加全面地了解数据和信息。此外,模态大型还可以减少数据的重复性,节省时间和资源。大模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发大模型。星环科技作为国内领先的大数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予大模型“长期记忆”,打破通用大模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直各行各业,与生态伙伴共同打造国产化大数据技术生态,推动数字经济的可持续发展。无涯是一款面向金融量化领域、超大规模参数量的生成式大语言模型,融合了舆情、资金、人物、空间、上下游等模态信息,具备强大的
什么是模态模型?模态模型是指能够处理和融合多种不同类型数据的模型。这些数据可以包括文本、图像、音频、视频等不同模态数据模态模型在许多应用领域中都发挥着重要作用,例如自然语言处理(NLP)、计算机视觉(CV)、音频处理、健康医疗等等。在模态模型中,不同模态数据被融合在一起,以便同时处理和分析它们。这种融合可以在不同的层面上实现,例如在特征级别或表示级别上。通过将不同模态数据结合自己的大模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、大模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予大模型“长期记忆”,打破通用大模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环在一起,模态模型可以获得更好的性能和更丰富的信息。模态模型的优势在于可以充分利用各种模态的信息,以获得更准确、更全面的结果。同时,模态模型还可以提高模型的泛化性能,减少过拟合的问题。为帮助企业构建
分布式向量数据库,基于分布式特性,可以对文档、图片、音视频等源、海量数据转化后的多维向量进行统一存储和管理。通过多进程架构与GPU加速技术,充分发挥并行检索能力,实现毫秒级高性能数据检索,结合相似度检索等技术,帮助用户快速挖掘数据价值。模态向量索引是一种用于在模态数据集中检索相似项的技术。模态数据集包含不同类型的数据,如文本、图像和音频等。模态向量索引的目的是将不同类型的数据映射到一个向量空间中,然后使用向量相似性度量方法(如余弦相似度)来计算各种类型的数据之间的相似性。在实际应用中,我们常常面对的是模态数据,这些数据由不同类型或来源的信息组成,如文本、图像、音频、视频等。如何将这些不同模态数据映射到统一或兼容的的商品分类到统一或兼容的区域,并实现跨类型或联合类型的服务,同样是一个既有趣又具挑战性的问题。星环分布式向量数据库-TranswarpHippo星环分布式向量数据库Hippo作为一款企业级云原生向量空间,并实现跨模态或联合模态的检索,是一个既有趣又具挑战性的问题。这就像在超市中,商品不仅包括食品、饮料、日用品和电器等不同类型,还有中文、英文、日文、韩文等不同来源的标签。如何将这些不同类型和来源
大模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发大模型。星环科技作为国内领先的大数据基础软件开发商,打造数据管理平台的模态、智能化、敏捷化和平民化产品。为帮助企业构建自己的大模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、大模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予大模型“长期记忆”,打破通用大模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环,推动数字经济的可持续发展。无涯是一款面向金融量化领域、超大规模参数量的生成式大语言模型,融合了舆情、资金、人物、空间、上下游等模态信息,具备强大的理解和生成能力,支持股票、债券、基金、商品等市场事件的的降本增效与科技创新。求索具备大数据行业需求理解、推理、各类(含模型)结构化查询语言和OpenCypher代码生成、文本生成、嵌入向量生成、知识推理等能力。借助这一领域大模型,企业的业务人员、数据
向量数据库不仅可以解决LLM众多问题,包括时间局限性,实时性难题和缺乏私域数据;空间局限性,输入限制导致上下文信息丢失;应用痛点,“幻觉”和低准确率问题;模态数据处理难题等。因此,向量数据库在图像明显。公司早在2018年便为公司内部AI团队研发向量数据库使用,凭借十年深耕于大数据市场所积累的行业经验,公司富有前瞻性地预见到向量数据库未来在AI时代下的应用潜力,不断地积累向量数据库的相关技术与专利,终产品技术迭代五年后于2023年5月份正式发布Hippo。星环的分布式向量数据库Hippo作为一款企业级云原生分布式向量数据库,基于分布式特性,可以对文档、图片、音视频等源、海量数据转化后的多维的实际应用能力。从公司层面来看,数据库国产化替代趋势下,高度自主研发的数据库厂商具有不可逾越的政策性优势。向量进行统一存储和管理。通过多进程架构与GPU加速技术,充分发挥并行检索能力,实现毫秒级高性能数据检索,结合相似度检索等技术,帮助用户快速挖掘数据价值。星环科技具备多年的数据库技术和AI技术积累,以及
模态大语言模型是一种能够结合多种输入模态的语言模型。传统的语言模型只能以单一的语言文本为输入进行建模,而模态大语言模型同时考虑图像、音频视频等多种不同的输入模态模态大语言模型不仅可以处理文本数据,还可以处理图像、音频、视频等多种媒体形式的数据,因此具有更全面的信息理解和生成能力,并能够在不同媒体之间进行跨模态的转换和推理。模态大语言模型的基本原理是将不同媒体形式的数据进行编码,并通过共享的语义空间进行交互和融合。具体而言,模型通过将文本、图像、音频等数据输入到不同的编码器中,将其转化为向量表示。然后,通过共享的语义空间,将不同媒体的向量进行交互和融合,从而实现模态信息的理解和生成。模态大语言模型还依赖于LLM丰富的知识储备以及强大的推理和泛化能力来解决模态问题。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的企业构建自己的行业大模型。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。
行业资讯
模态 大模型
模态大模型是指将文本、图像、视频、音频等模态信息联合起来进行训练的模型。这种模型可以处理和分析种类型的数据,例如文本、图像、视频和音频,从而更全面地理解和利用各种信息。模态大模型的训练通常采用深度学习技术,通过对大量模态数据进行学习,模型能够从数据中提取出更丰富、更复杂的信息。模态大模型在许多领域都有应用,例如自然语言处理、计算机视觉、音频处理等。可以用于文本和图像的语义理解、视频的分类和识别、音频的情感分析和语音识别等任务。通过多模态大模型,我们可以更好地理解和处理复杂的模态数据,提高人工智能的应用性能。大模型持续开发和训练工具为了满足企业应用大语言模型的需求,星环科技率先、向量数据库或图数据库产品,将不同大语言模型、传统机器学习和其他流程等编排成符合企业实际领域和业务需求的任务。”且“敏捷可持续迭代”的人工智能应用。针对大语言模型及其衍生数据、模型和应用方面的问题,SophonLLMOps工具链需要完成从通用大语言模型的训练和微调、模型上架到模型持续运营及提升迭代的全流程任务
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...