南京 隐私计算
Sophon P²C是一款分布式隐私计算平台,集隐私计算、加密网络通信等多种功能,为多方安全建模提供完整的解决方案。以隐私保护为前提,Sophon P²C解决了跨组织协作时无法安全利用各方数据的困境
Sophon P²C是一款分布式隐私计算平台,集隐私查询、隐私计算、加密通信等多种功能,能够为多方安全建模提供完整的解决方案。其以隐私保护为前提,能够帮助用户解决跨组织协作时无法安全利用各方数据的困境。
南京 隐私计算 更多内容

近日,由江苏省工业和信息化厅、江苏南京生态科技岛经济开发区管理委员会指导的“隐私计算与数据安全”沙龙在星环科技南京子公司成功举办。江苏省工业和信息化厅大数据产业处处长张北虹、江苏南京生态科技岛软件产业人才发展基金会常务副秘书长皇青、江苏大数据联盟理事长潘金贵等领导出席了活动。隐私计算作为保护数据隐私安全、支撑数据有序流通的关键技术,近几年受到了广泛关注。此次沙龙汇聚了来自政产学研各界的专家学者及金融、能源等行业的大咖,共话隐私计算技术前沿进展,探讨隐私计算应用场景落地与案例实践。会议上,江苏省工业和信息化厅大数据产业处处长张北虹首先进行了开场致辞,介绍了江苏省大数据发展的展望和政策,并、分布式数据库ArgoDB、分布式交易型数据库KunDB纷纷通过江苏省信创产品测试并进入江苏省信创产品总图谱等。江苏省信息化协会教授级高级经济师张启祥就数据要素与隐私计算发表了主题演讲,解读了数据要素、融合难度大、参与意愿、监管等难点。星环科技在隐私计算领域也进行了诸多技术探索和实践,此次沙龙上星环科技大数据和人工智能研究院研究员张燕以《隐私计算助力数据要素安全流通》为主题,分享了隐私计算是如何

行业资讯
隐私计算场景
租房识别系统:南京市应用隐私计算技术建立了群租房识别系统。政府数据开放共享渠道:中山市应用隐私计算打造了政府数据开放共享的统一渠道。医疗行业:数据共享流通:隐私计算在医疗行业的应用包括跨医疗机构之间的隐私计算技术的应用场景非常广泛,涵盖了金融、政务、医疗、通信、互联网等多个行业。以下是一些具体的应用场景:金融行业:风控与营销:隐私计算技术可以用于金融行业的获客和风控,例如在不泄露客户个人信息的前提下进行联合画像和产品推荐,以及在不泄露客户已有贷款数额、黑名单等信息的前提下评估客户信用情况,降低违约风险。联合反洗钱:隐私计算技术可以帮助金融机构在不共享客户数据的情况下进行反洗钱合作。智能营销、智能风控、智能管理:隐私计算在金融领域还涉及到智能营销、智能风控、智能管理等多个方面。政务行业:数据共享与开放:隐私计算在政务领域的应用包括政务数据共享和数据开放,如使用公共数据平台进行数据共享。群数据共享流通,以及医疗开放数据与政企等单位数据的融合应用。基因组学分析、群体遗传学分析:隐私计算技术在医疗领域主要用于基因组学分析、群体遗传学分析等医学研究、药物研发、辅助诊疗和疫情防控等方面。通信行业

行业资讯
隐私计算,什么是隐私计算?
隐私计算是一种保证两个或多个数据提供方在不泄露敏感数据的前提下进行联合计算的技术和系统。在隐私计算的框架下,参与方的数据不出本地,各方能对密文数据进行分析计算并验证计算结果,保证在各个环节中数据可用不可见。隐私计算技术有多种常见的形式,包同态加密、安全多方计算和差分隐私等。同态加密技术能够在不暴露明文的情况下对密文进行计算,而安全多方计算可以保证在多个数据提供方之间进行计算而无需交换实际的数据,从而保护计算数据的隐私性。差分隐私技术则可以在不暴露个人信息的情况下对数据进行分析和共享。隐私计算技术的应用场景非常广泛,包括金融、医疗、电子商务、智能交通等领域。例如,在医疗领域中,隐私计算技术可以在多个医疗机构之间共享患者的医疗数据,而不会暴露个人隐私信息,从而提高医疗资源的利用效率。在电子商务领域中,隐私计算技术可以帮助商家进行用户行为分析,而不会泄露用户的人信息,从而提高商家的服务质量。隐私计算技术是保护个人隐私信息的有效手段,可以在不暴露个人信息的情况下进行数据计算和分析,为各个域的数据共享和应用带来便利。星环分布式隐私计算平台-SophonP²C星环分布式隐私计算平台SophonP

行业资讯
联邦计算与隐私计算
联邦计算和隐私计算都是在保护数据隐私的前提下进行数据计算或模型训练的技术手段。联邦计算指的是在不泄露原始数据隐私的前提下,将各方的数据集合并在一起进行计算或模型训练。与传统的数据集中式计算方案相比,联邦计算更加注重数据隐私保护和数据的去中心。联邦计算的基本流程是:通过密码学手段保证各方之间的数据隐私;将各个参与方提供的数据在本地预处理,提取特征,然后在各方之间进行模型参数更新;后汇总模型参数,得到联合训练后的模型。联邦计算应用于数据大规模分布式场景,例如金融风控、医疗诊疗、智慧城市等多个领域。隐私计算则是一种在不将原始数据暴露的前提下,基于加密计算实现对数据的计算、查询或分析。隐私计算中的数据能够在加密状态下保存、传输、计算和输出,用户在享受计算结果的同时,也可以享受到数据隐私保护。在隐私计算中,数据拥有者将原始数据进行加密,形成密文。在密文的基础上,进行加密计算,得到密文结果。之后,密文结果才被解密,得到终的结果。通过加密计算,私计算实现了用户数据的隐私保护和数据共享的矛盾的平衡。联邦计算更加注重在各方之间进行数据合并时对数据隐私的保护,强调去中心化,在各方的数据安全和隐私保护保证

行业资讯
联邦计算与隐私计算
隐私性,因为它避免了将原始数据发送到中央服务器或共享给第三方。隐私计算是一种实现隐私保护的计算方法和技术,其中包括但不限于联邦学习、安全多方计算、可信计算等。它可以在数据产生、存储、处理和流通的各个环节提供隐私保护,使得数据在协作的同时不泄露给其他未经授权的实体。联邦计算和隐私计算虽然都致力于在保护数据隐私的前提下实现数据价值的挖掘,但是它们在应用场景上存在一些不同。联邦计算主要应用于人工智能和机器学习领域,特别是当涉及到大数据和多源数据融合的时候,它的优点是可以保护数据隐私并且提高计算效率。而隐私计算的应用场景则更加广泛,它可以在数据产生、存储、处理和流通的各个环节提供隐私保护,使得数据在协作的同时不泄露给其他未经授权的实体,因此可以应用于众多领域如金融、医疗、政府等。星环分布式隐私计算平台-SophonP²C星环分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台提供多种开箱即用的工具,方便用户在隐私场景下进行数据处理、分析、特征工程等工作,并快速建立机AI模型。加密

行业资讯
隐私计算技术
隐私计算技术是一系列允许数据在保护隐私的同时被分析和利用的密码学和计算方法。主要包括以下几种:多方安全计算:这是一种密码学领域的隐私保护分布式计算技术,允许多个参与方在互不信任且没有可信第三方的可信的程序进行处理。同态加密:同态加密是一种特殊的加密形式,允许在加密数据上直接进行计算,计算结果在解密后与在原始数据上进行相同计算的结果相同,从而保护数据的隐私性。零知识证明:零知识证明允许一方情况下,协同计算一个约定函数,同时确保除计算结果外,各参与方无法通过计算过程中的交互数据推断出其他参与方的原始数据。联邦学习:联邦学习是一种分布式机器学习方法,允许多个节点或设备协同训练模型,而不需要向另一方证明某个陈述是正确的,而无需透露任何有用的信息,除了该陈述本身的真实性。差分隐私:差分隐私通过添加噪声来保护个人信息,确保在发布统计数据时,单个数据项对结果的影响被最小化,从而保护个人隐私。匿名化:匿名化技术通过去除或替换数据中的识别信息,使得数据在被使用时无法关联到具体的个人,实现隐私保护。

行业资讯
联邦隐私计算
联邦隐私计算通常指联邦学习与隐私计算技术相结合。基本原理数据不出本地:参与方在本地拥有各自的数据,在联合训练模型或进行数据处理时,数据始终不离开本地设备或数据中心,避免了数据的直接共享。加密参数交互正确的计算结果,防止单点数据泄露。差分隐私:通过在数据处理或模型训练过程中添加适量的随机噪声,使得处理后的结果对于数据集中任何单个记录的存在或缺失不敏感,在保护个体隐私的同时提供有价值的统计信息。应用可以利用联邦隐私计算技术,在保护患者隐私的情况下,联合进行疾病诊断模型的训练、药物研发等工作,促进医疗数据的共享和利用。工业领域:在供应链上下游企业之间,可通过联邦隐私计算实现数据共享和协同分析,如需求预测、质量控制、生产优化等,提高产业链的协同效率和竞争力。:通过加密技术对模型参数进行加密处理后在参与方之间进行传输和交换。各方利用本地数据对加密后的参数进行计算和更新,并将更新后的加密参数再返回给其他参与方。主要技术同态加密:允许在密文上直接进行特定类型的计算,计算结果解密后与在明文上进行相同计算的结果相同,确保数据在加密状态下进行处理和分析。秘密共享:将数据或计算结果分割成多个份额,分发给不同的参与方,只有当足够数量的参与方合作时才能恢复出原始数据或

新闻
星环科技亮相南京创新周
6月26日,星环科技受邀参加南京市委市政府举办的南京创新周活动。此次创新周以“创新南京、机会无限”为主题,秉持“共创、共享、共赢”的理念,邀请全球知名科学家、企业家、创新机构、投资机构代表齐聚南京,开展创新思想交流、展示新科技成果、进行合作项目对接,为各类创新企业、人才、机构提供国际化展示、对接和合作平台。作为一家涵盖“大数据+人工智能+容器云商业化应用服务”的企业,星环科技在此次创新周上设立了展台。南京市雨花台区区委书记戴华杰,中国(南京)软件谷管委会主任谢祖国参观了星环科技的展台。两位领导对星环科技的的研发创新能力流处理引擎、基于容器的云计算技术、大规模图数据库技术均处于世界领先地位。超前的技术眼光、卓越的技术实力和产品落地能力,奠定了星环科技行业引领者的地位。公司成立六年来,已经拥有超过1000家用户,覆盖
猜你喜欢
产品文档
4 快速入门
快速上手本章节将引导您快速熟悉StellarDB,并为您初步介绍如何通过KGExplorer和beeline客户端操作StellarDB。其中,"StellarDB初探"一节通过构建一张人物关系图,从零介绍如何在StellarDB进行基本操作;"StellarDB进阶"一节为您提供了内置于StellarDB的《哈利·波特》人物关系图,帮助您进一步探索StellarDB。StellarDB初探使用KGExplorer构建图从Manager页面进入KGExplorer页面。若KGExplorer开启了单点登录,会自动跳转Federation登录页面,按如图方式登录:KGExplorer用戶开启方法以及详细使用说明请查看章节《KGExplorer使用文档》。点击登录后进入KGExplorer主页面。我们首先需要构建图名为"hello_world"的图。在主页面右上角点击创建图按钮开始图谱schema的构建。按照引导填写图基本信息后点击确定进入构建页面。在画布中,我们为"hello_world"图创建Boy和Girl两种类型的点,两种类型的点均包含name、salary、age、single四...
产品文档
3 安装 StellarDB
3.1在TDH平台安装StellarDB3.2StellarDB安装校验3.3StellarDB低版本升级至StellarDB5.0.1
产品文档
5.6 数据操作语句
本章节的示例语句均可在示例图my_graph中执行,执行前请先创建示例图my_graph,建图语句如下:creategraphmy_graphwithschema(:Boy{namestring,salarydouble,ageint,singleboolean,birthdaylocaldatetime,reservelong,ratedecimal(38,10),hobbysarray<string>,geoPointgeo<double>})(:Girl{namestring,salarydouble,ageint,singleboolean,birthdaylocaldatetime,reservelong,ratedecimal(38,10),hobbysarray<string>,geoPointgeo<double>})[:Friend{sinceint}][:Likes{sinceint}]graphproperties:{`graph.shard.number`:3,`graph.replication.number`:...
产品文档
6.1 图计算
StellarDB5.0.1版本对图算法场景进行了大规模改进和提升,内置算法性能得到较大提升。在语法方面,StellarDB5.0.1的内置图算法对于返回的节点,会直接以节点类型返回。因此可以直接使用uid(vertex)访问节点的uid,而不再需要node_rk_to_uid函数进行uid的转换。可以参考PageRank等函数。另外,对于图算法返回的节点,我们也可以灵活的访问其其他属性作为返回值。图计算简介StellarDB的图计算使用TEoC语句调用相应图算法。算法的输入数据为图的点、边数据。当前版本中图计算支持结果返回、结果导出和结果写回。在使用图算法时,使用configcrux.execution.modeanalysis;语句切换到分析模式下使用图算法语句。图数据视图StellarDB支持创建一个可被持久化的视图,用于加速图算法执行过程。创建视图创建视图的语法如下所示:createquerytemporarygraphviewGRAPH_VIEW_NAMEas(v)[e]withGRAPH_ALGO(@GRAPH_VIEW_NAME,VIEW_STORE_PATH,CONFI...
为什么引入动态图模型?在实际应用过程中很容易可以发现,图数据在很多图数据的应用场景中并不是静态不变的,而是动态演进的,这些场景中包括例如金融反欺诈场景中金融交易网络随着时间的推进而发生的交易变化、交易社群变化等;又比如社交网络中新增用户、用户关注或者取消关注、更改账户信息等。将图数据变化的历史记录下来,不仅可以用于历史数据规律的总结,还可以利用动态图数据进行动态图神经网络相关技术的研究,从而进一步挖掘数据中潜在的数据价值和更加灵活高效的业务场景,譬如预测某一个时刻某一事件是否会发生。动态图模型的动态变化图数据的动态变化主要分为两类,一类是节点或边的属性的值的变化;另一类变化是子图(结构)的变化,如新增/删除点边。这两种图数据的动态变化可以单独发生,也可以同时发生。从图数据的属性变化角度来看,StellarDB5.0.1动态图模型可以记录图中节点或者边属性的所有历史版本(而非新数据覆盖旧数据)。在实际数据开发使用中,还可以结合诸如柱状图、趋势图等对历史数据进行可视化,更加直观、更加适合业务使用。从图数据的子图(结构)的角度来看,StellarDB5.0.1动态图模型还可以返回不同时间子图...
产品文档
7.1 自定义函数
StellarDB支持用户添加自定义函数,添加后可在cypher语句中使用。自定义函数实现自定义函数通过java/scala语言开发,可继承实现两种基类,编译成jar包,通过指定命令加载到StellarDB。需要实现的基类为如下两种,可自行选择继承合适的基类:继承UDF基类继承GenericUDF基类。继承UDF基类该类实现简单,功能较为单一。支持Quark的基本类型、数组和Map。适合实现简单的逻辑。继承org.apache.hadoop.hive.ql.exec.UDF类继承UDF类必须实现evaluate方法且返回值类型不能为void,支持定义多个evaluate方法不同参数列表用于处理不同类型数据。@Description(name="my_plus",value="my_plus()-ifstring,doconcat;ifinteger,doplus",extended="Example:\n>selectmy_plus('a','b');\n>ab\n>selectmy_plus(3,5);\n>8")/***实现UDF函数,若字符串执行拼接,in...
产品文档
5.2 TEoC 前置参数
通过beeline或JDBC时,设置参数configquery.langcypher;将查询语言切换为TEoC模式。根据使用场景选择查询模式(默认为immediate模式)immediate模式通常用于并发及短查询场景,查询结果和中间结果通常不超过百万。通过configcrux.execution.modeimmediate;切换。analysis模式通常用于分析场景,创建图、插入数据以及图算法相关的语句必须在该模式下进行。通过configcrux.execution.modeanalysis;切换。
产品文档
5.17 索引(新)
索引是数据库中某些数据的冗余副本,目的是使查询性能更优。作为代价,数据库需要额外存储空间和较慢写入速度,因此决定哪些字段需要索引是一项重要且不易的任务。(新)StellarDB5.0.1版本不再对旧版本使用的manipulatecreate_index和manipulatedelete_index语法进行支持,在新版本中统一使用createindex和dropindex进行索引的创建和删除新增索引CREATEINDEX[IFNOTEXISTS]FOR(LabelName)ON[f1,f2,...];CREATEINDEX[IFNOTEXISTS]FOR[LabelName]ON[f1,f2,...];不支持对TIME_SERIES类型的属性创建索引默认情况下,对同一个Label的某个属性多次创建索引会报错;但如果带有IFNOTEXISTS,则不会抛出任何错误包裹点边LabelName的括号不同,注意区分示例1.在点labelperson的属性name和age上建立索引CREATEINDEXIFNOTEXISTSFOR(person)ON[name,age];示例2.在边labelask...
产品文档
5.12 变量声明
声明简介声明是指为特定数据类型的变量分配一定的存储空间,并命名该变量以便引用它;必须先声明变量,然后才能引用它;对声明的变量可以进行赋值操作来改变它的值;声明的变量其作用域是Session级别的。变量声明使用decl关键字声明一个变量必须为变量指定名称和类型,且名称不能与已有的变量名相同。声明但未赋值的变量的默认值为null。变量名声明对大小写敏感。变量声明的语句遵循如下格式:DECL[<variable_name>:<variable_type>];使用方法示例如下表所示:语句说明declx:int;声明一个类型为int的变量xdecls:string;声明一个类型为string的变量sdecll:long;声明一个类型为long的变量ldeclb:boolean;声明一个类型为boolean的变量bdecld:double;声明一个类型为double的变量ddecltime:localdatetime;声明一个类型为localdatetime的变量timedecld1:decimal;声明一个类型为decimal的变量d1decllist1:list[int...
产品文档
5.10 表达式
类型表达式类型例子十进制型整数10,-213十进制小数1.25,3.604E-14,-2.31十进制型长整数199345843592l,-12381543923L任意精度的有符号十进制数123bd,123.31BD八进制整数(0开头)084,-096字符串"星环",'信息科技'布尔类型true,false,TRUE,FALSE数组类型[1,2,3],["星环","信息科技"],[decimal(10.2,3,1),decimal(100.2,3,2)],[localdatetime("2021-01-18T09:50:12.627"),localdatetime("2021-11-18T03:50:12.113")]时间类型localdatetime("2021-01-18T09:50:12.627")Decimal类型decimal(10.2,3,1)地理空间类型point(20.5,30.5),point(-20.5,-30.5)时序类型{localdatetime("2023-01-01T15:16:17")::"nice"},{localdatetime("1997-01-01...